1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
$ RSCALE, WORK, INFO ) * * -- LAPACK routine (version 3.2.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * June 2010 * * .. Scalar Arguments .. CHARACTER JOB INTEGER IHI, ILO, INFO, LDA, LDB, N * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), LSCALE( * ), $ RSCALE( * ), WORK( * ) * .. * * Purpose * ======= * * DGGBAL balances a pair of general real matrices (A,B). This * involves, first, permuting A and B by similarity transformations to * isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N * elements on the diagonal; and second, applying a diagonal similarity * transformation to rows and columns ILO to IHI to make the rows * and columns as close in norm as possible. Both steps are optional. * * Balancing may reduce the 1-norm of the matrices, and improve the * accuracy of the computed eigenvalues and/or eigenvectors in the * generalized eigenvalue problem A*x = lambda*B*x. * * Arguments * ========= * * JOB (input) CHARACTER*1 * Specifies the operations to be performed on A and B: * = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 * and RSCALE(I) = 1.0 for i = 1,...,N. * = 'P': permute only; * = 'S': scale only; * = 'B': both permute and scale. * * N (input) INTEGER * The order of the matrices A and B. N >= 0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) * On entry, the input matrix A. * On exit, A is overwritten by the balanced matrix. * If JOB = 'N', A is not referenced. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * B (input/output) DOUBLE PRECISION array, dimension (LDB,N) * On entry, the input matrix B. * On exit, B is overwritten by the balanced matrix. * If JOB = 'N', B is not referenced. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * ILO (output) INTEGER * IHI (output) INTEGER * ILO and IHI are set to integers such that on exit * A(i,j) = 0 and B(i,j) = 0 if i > j and * j = 1,...,ILO-1 or i = IHI+1,...,N. * If JOB = 'N' or 'S', ILO = 1 and IHI = N. * * LSCALE (output) DOUBLE PRECISION array, dimension (N) * Details of the permutations and scaling factors applied * to the left side of A and B. If P(j) is the index of the * row interchanged with row j, and D(j) * is the scaling factor applied to row j, then * LSCALE(j) = P(j) for J = 1,...,ILO-1 * = D(j) for J = ILO,...,IHI * = P(j) for J = IHI+1,...,N. * The order in which the interchanges are made is N to IHI+1, * then 1 to ILO-1. * * RSCALE (output) DOUBLE PRECISION array, dimension (N) * Details of the permutations and scaling factors applied * to the right side of A and B. If P(j) is the index of the * column interchanged with column j, and D(j) * is the scaling factor applied to column j, then * LSCALE(j) = P(j) for J = 1,...,ILO-1 * = D(j) for J = ILO,...,IHI * = P(j) for J = IHI+1,...,N. * The order in which the interchanges are made is N to IHI+1, * then 1 to ILO-1. * * WORK (workspace) DOUBLE PRECISION array, dimension (lwork) * lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and * at least 1 when JOB = 'N' or 'P'. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * * Further Details * =============== * * See R.C. WARD, Balancing the generalized eigenvalue problem, * SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, HALF, ONE PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 ) DOUBLE PRECISION THREE, SCLFAC PARAMETER ( THREE = 3.0D+0, SCLFAC = 1.0D+1 ) * .. * .. Local Scalars .. INTEGER I, ICAB, IFLOW, IP1, IR, IRAB, IT, J, JC, JP1, $ K, KOUNT, L, LCAB, LM1, LRAB, LSFMAX, LSFMIN, $ M, NR, NRP2 DOUBLE PRECISION ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2, $ COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX, $ SFMIN, SUM, T, TA, TB, TC * .. * .. External Functions .. LOGICAL LSAME INTEGER IDAMAX DOUBLE PRECISION DDOT, DLAMCH EXTERNAL LSAME, IDAMAX, DDOT, DLAMCH * .. * .. External Subroutines .. EXTERNAL DAXPY, DSCAL, DSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, INT, LOG10, MAX, MIN, SIGN * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND. $ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGGBAL', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) THEN ILO = 1 IHI = N RETURN END IF * IF( N.EQ.1 ) THEN ILO = 1 IHI = N LSCALE( 1 ) = ONE RSCALE( 1 ) = ONE RETURN END IF * IF( LSAME( JOB, 'N' ) ) THEN ILO = 1 IHI = N DO 10 I = 1, N LSCALE( I ) = ONE RSCALE( I ) = ONE 10 CONTINUE RETURN END IF * K = 1 L = N IF( LSAME( JOB, 'S' ) ) $ GO TO 190 * GO TO 30 * * Permute the matrices A and B to isolate the eigenvalues. * * Find row with one nonzero in columns 1 through L * 20 CONTINUE L = LM1 IF( L.NE.1 ) $ GO TO 30 * RSCALE( 1 ) = ONE LSCALE( 1 ) = ONE GO TO 190 * 30 CONTINUE LM1 = L - 1 DO 80 I = L, 1, -1 DO 40 J = 1, LM1 JP1 = J + 1 IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO ) $ GO TO 50 40 CONTINUE J = L GO TO 70 * 50 CONTINUE DO 60 J = JP1, L IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO ) $ GO TO 80 60 CONTINUE J = JP1 - 1 * 70 CONTINUE M = L IFLOW = 1 GO TO 160 80 CONTINUE GO TO 100 * * Find column with one nonzero in rows K through N * 90 CONTINUE K = K + 1 * 100 CONTINUE DO 150 J = K, L DO 110 I = K, LM1 IP1 = I + 1 IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO ) $ GO TO 120 110 CONTINUE I = L GO TO 140 120 CONTINUE DO 130 I = IP1, L IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO ) $ GO TO 150 130 CONTINUE I = IP1 - 1 140 CONTINUE M = K IFLOW = 2 GO TO 160 150 CONTINUE GO TO 190 * * Permute rows M and I * 160 CONTINUE LSCALE( M ) = I IF( I.EQ.M ) $ GO TO 170 CALL DSWAP( N-K+1, A( I, K ), LDA, A( M, K ), LDA ) CALL DSWAP( N-K+1, B( I, K ), LDB, B( M, K ), LDB ) * * Permute columns M and J * 170 CONTINUE RSCALE( M ) = J IF( J.EQ.M ) $ GO TO 180 CALL DSWAP( L, A( 1, J ), 1, A( 1, M ), 1 ) CALL DSWAP( L, B( 1, J ), 1, B( 1, M ), 1 ) * 180 CONTINUE GO TO ( 20, 90 )IFLOW * 190 CONTINUE ILO = K IHI = L * IF( LSAME( JOB, 'P' ) ) THEN DO 195 I = ILO, IHI LSCALE( I ) = ONE RSCALE( I ) = ONE 195 CONTINUE RETURN END IF * IF( ILO.EQ.IHI ) $ RETURN * * Balance the submatrix in rows ILO to IHI. * NR = IHI - ILO + 1 DO 200 I = ILO, IHI RSCALE( I ) = ZERO LSCALE( I ) = ZERO * WORK( I ) = ZERO WORK( I+N ) = ZERO WORK( I+2*N ) = ZERO WORK( I+3*N ) = ZERO WORK( I+4*N ) = ZERO WORK( I+5*N ) = ZERO 200 CONTINUE * * Compute right side vector in resulting linear equations * BASL = LOG10( SCLFAC ) DO 240 I = ILO, IHI DO 230 J = ILO, IHI TB = B( I, J ) TA = A( I, J ) IF( TA.EQ.ZERO ) $ GO TO 210 TA = LOG10( ABS( TA ) ) / BASL 210 CONTINUE IF( TB.EQ.ZERO ) $ GO TO 220 TB = LOG10( ABS( TB ) ) / BASL 220 CONTINUE WORK( I+4*N ) = WORK( I+4*N ) - TA - TB WORK( J+5*N ) = WORK( J+5*N ) - TA - TB 230 CONTINUE 240 CONTINUE * COEF = ONE / DBLE( 2*NR ) COEF2 = COEF*COEF COEF5 = HALF*COEF2 NRP2 = NR + 2 BETA = ZERO IT = 1 * * Start generalized conjugate gradient iteration * 250 CONTINUE * GAMMA = DDOT( NR, WORK( ILO+4*N ), 1, WORK( ILO+4*N ), 1 ) + $ DDOT( NR, WORK( ILO+5*N ), 1, WORK( ILO+5*N ), 1 ) * EW = ZERO EWC = ZERO DO 260 I = ILO, IHI EW = EW + WORK( I+4*N ) EWC = EWC + WORK( I+5*N ) 260 CONTINUE * GAMMA = COEF*GAMMA - COEF2*( EW**2+EWC**2 ) - COEF5*( EW-EWC )**2 IF( GAMMA.EQ.ZERO ) $ GO TO 350 IF( IT.NE.1 ) $ BETA = GAMMA / PGAMMA T = COEF5*( EWC-THREE*EW ) TC = COEF5*( EW-THREE*EWC ) * CALL DSCAL( NR, BETA, WORK( ILO ), 1 ) CALL DSCAL( NR, BETA, WORK( ILO+N ), 1 ) * CALL DAXPY( NR, COEF, WORK( ILO+4*N ), 1, WORK( ILO+N ), 1 ) CALL DAXPY( NR, COEF, WORK( ILO+5*N ), 1, WORK( ILO ), 1 ) * DO 270 I = ILO, IHI WORK( I ) = WORK( I ) + TC WORK( I+N ) = WORK( I+N ) + T 270 CONTINUE * * Apply matrix to vector * DO 300 I = ILO, IHI KOUNT = 0 SUM = ZERO DO 290 J = ILO, IHI IF( A( I, J ).EQ.ZERO ) $ GO TO 280 KOUNT = KOUNT + 1 SUM = SUM + WORK( J ) 280 CONTINUE IF( B( I, J ).EQ.ZERO ) $ GO TO 290 KOUNT = KOUNT + 1 SUM = SUM + WORK( J ) 290 CONTINUE WORK( I+2*N ) = DBLE( KOUNT )*WORK( I+N ) + SUM 300 CONTINUE * DO 330 J = ILO, IHI KOUNT = 0 SUM = ZERO DO 320 I = ILO, IHI IF( A( I, J ).EQ.ZERO ) $ GO TO 310 KOUNT = KOUNT + 1 SUM = SUM + WORK( I+N ) 310 CONTINUE IF( B( I, J ).EQ.ZERO ) $ GO TO 320 KOUNT = KOUNT + 1 SUM = SUM + WORK( I+N ) 320 CONTINUE WORK( J+3*N ) = DBLE( KOUNT )*WORK( J ) + SUM 330 CONTINUE * SUM = DDOT( NR, WORK( ILO+N ), 1, WORK( ILO+2*N ), 1 ) + $ DDOT( NR, WORK( ILO ), 1, WORK( ILO+3*N ), 1 ) ALPHA = GAMMA / SUM * * Determine correction to current iteration * CMAX = ZERO DO 340 I = ILO, IHI COR = ALPHA*WORK( I+N ) IF( ABS( COR ).GT.CMAX ) $ CMAX = ABS( COR ) LSCALE( I ) = LSCALE( I ) + COR COR = ALPHA*WORK( I ) IF( ABS( COR ).GT.CMAX ) $ CMAX = ABS( COR ) RSCALE( I ) = RSCALE( I ) + COR 340 CONTINUE IF( CMAX.LT.HALF ) $ GO TO 350 * CALL DAXPY( NR, -ALPHA, WORK( ILO+2*N ), 1, WORK( ILO+4*N ), 1 ) CALL DAXPY( NR, -ALPHA, WORK( ILO+3*N ), 1, WORK( ILO+5*N ), 1 ) * PGAMMA = GAMMA IT = IT + 1 IF( IT.LE.NRP2 ) $ GO TO 250 * * End generalized conjugate gradient iteration * 350 CONTINUE SFMIN = DLAMCH( 'S' ) SFMAX = ONE / SFMIN LSFMIN = INT( LOG10( SFMIN ) / BASL+ONE ) LSFMAX = INT( LOG10( SFMAX ) / BASL ) DO 360 I = ILO, IHI IRAB = IDAMAX( N-ILO+1, A( I, ILO ), LDA ) RAB = ABS( A( I, IRAB+ILO-1 ) ) IRAB = IDAMAX( N-ILO+1, B( I, ILO ), LDB ) RAB = MAX( RAB, ABS( B( I, IRAB+ILO-1 ) ) ) LRAB = INT( LOG10( RAB+SFMIN ) / BASL+ONE ) IR = LSCALE( I ) + SIGN( HALF, LSCALE( I ) ) IR = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB ) LSCALE( I ) = SCLFAC**IR ICAB = IDAMAX( IHI, A( 1, I ), 1 ) CAB = ABS( A( ICAB, I ) ) ICAB = IDAMAX( IHI, B( 1, I ), 1 ) CAB = MAX( CAB, ABS( B( ICAB, I ) ) ) LCAB = INT( LOG10( CAB+SFMIN ) / BASL+ONE ) JC = RSCALE( I ) + SIGN( HALF, RSCALE( I ) ) JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB ) RSCALE( I ) = SCLFAC**JC 360 CONTINUE * * Row scaling of matrices A and B * DO 370 I = ILO, IHI CALL DSCAL( N-ILO+1, LSCALE( I ), A( I, ILO ), LDA ) CALL DSCAL( N-ILO+1, LSCALE( I ), B( I, ILO ), LDB ) 370 CONTINUE * * Column scaling of matrices A and B * DO 380 J = ILO, IHI CALL DSCAL( IHI, RSCALE( J ), A( 1, J ), 1 ) CALL DSCAL( IHI, RSCALE( J ), B( 1, J ), 1 ) 380 CONTINUE * RETURN * * End of DGGBAL * END |