1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
      SUBROUTINE DLAE2ABCRT1RT2 )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   ABCRT1RT2
*     ..
*
*  Purpose
*  =======
*
*  DLAE2  computes the eigenvalues of a 2-by-2 symmetric matrix
*     [  A   B  ]
*     [  B   C  ].
*  On return, RT1 is the eigenvalue of larger absolute value, and RT2
*  is the eigenvalue of smaller absolute value.
*
*  Arguments
*  =========
*
*  A       (input) DOUBLE PRECISION
*          The (1,1) element of the 2-by-2 matrix.
*
*  B       (input) DOUBLE PRECISION
*          The (1,2) and (2,1) elements of the 2-by-2 matrix.
*
*  C       (input) DOUBLE PRECISION
*          The (2,2) element of the 2-by-2 matrix.
*
*  RT1     (output) DOUBLE PRECISION
*          The eigenvalue of larger absolute value.
*
*  RT2     (output) DOUBLE PRECISION
*          The eigenvalue of smaller absolute value.
*
*  Further Details
*  ===============
*
*  RT1 is accurate to a few ulps barring over/underflow.
*
*  RT2 may be inaccurate if there is massive cancellation in the
*  determinant A*C-B*B; higher precision or correctly rounded or
*  correctly truncated arithmetic would be needed to compute RT2
*  accurately in all cases.
*
*  Overflow is possible only if RT1 is within a factor of 5 of overflow.
*  Underflow is harmless if the input data is 0 or exceeds
*     underflow_threshold / macheps.
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
      DOUBLE PRECISION   TWO
      PARAMETER          ( TWO = 2.0D0 )
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D0 )
      DOUBLE PRECISION   HALF
      PARAMETER          ( HALF = 0.5D0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   ABACMNACMXADFDFRTSMTB
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSSQRT
*     ..
*     .. Executable Statements ..
*
*     Compute the eigenvalues
*
      SM = A + C
      DF = A - C
      ADF = ABSDF )
      TB = B + B
      AB = ABSTB )
      IFABSA ).GT.ABSC ) ) THEN
         ACMX = A
         ACMN = C
      ELSE
         ACMX = C
         ACMN = A
      END IF
      IFADF.GT.AB ) THEN
         RT = ADF*SQRTONE+AB / ADF )**2 )
      ELSE IFADF.LT.AB ) THEN
         RT = AB*SQRTONE+ADF / AB )**2 )
      ELSE
*
*        Includes case AB=ADF=0
*
         RT = AB*SQRTTWO )
      END IF
      IFSM.LT.ZERO ) THEN
         RT1 = HALF*SM-RT )
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE IFSM.GT.ZERO ) THEN
         RT1 = HALF*SM+RT )
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE
*
*        Includes case RT1 = RT2 = 0
*
         RT1 = HALF*RT
         RT2 = -HALF*RT
      END IF
      RETURN
*
*     End of DLAE2
*
      END