1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
$ S, LDS, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. INTEGER INFO, K, KSTART, KSTOP, LDQ, LDS, N DOUBLE PRECISION RHO * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ), $ W( * ) * .. * * Purpose * ======= * * DLAED9 finds the roots of the secular equation, as defined by the * values in D, Z, and RHO, between KSTART and KSTOP. It makes the * appropriate calls to DLAED4 and then stores the new matrix of * eigenvectors for use in calculating the next level of Z vectors. * * Arguments * ========= * * K (input) INTEGER * The number of terms in the rational function to be solved by * DLAED4. K >= 0. * * KSTART (input) INTEGER * KSTOP (input) INTEGER * The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP * are to be computed. 1 <= KSTART <= KSTOP <= K. * * N (input) INTEGER * The number of rows and columns in the Q matrix. * N >= K (delation may result in N > K). * * D (output) DOUBLE PRECISION array, dimension (N) * D(I) contains the updated eigenvalues * for KSTART <= I <= KSTOP. * * Q (workspace) DOUBLE PRECISION array, dimension (LDQ,N) * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max( 1, N ). * * RHO (input) DOUBLE PRECISION * The value of the parameter in the rank one update equation. * RHO >= 0 required. * * DLAMDA (input) DOUBLE PRECISION array, dimension (K) * The first K elements of this array contain the old roots * of the deflated updating problem. These are the poles * of the secular equation. * * W (input) DOUBLE PRECISION array, dimension (K) * The first K elements of this array contain the components * of the deflation-adjusted updating vector. * * S (output) DOUBLE PRECISION array, dimension (LDS, K) * Will contain the eigenvectors of the repaired matrix which * will be stored for subsequent Z vector calculation and * multiplied by the previously accumulated eigenvectors * to update the system. * * LDS (input) INTEGER * The leading dimension of S. LDS >= max( 1, K ). * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = 1, an eigenvalue did not converge * * Further Details * =============== * * Based on contributions by * Jeff Rutter, Computer Science Division, University of California * at Berkeley, USA * * ===================================================================== * * .. Local Scalars .. INTEGER I, J DOUBLE PRECISION TEMP * .. * .. External Functions .. DOUBLE PRECISION DLAMC3, DNRM2 EXTERNAL DLAMC3, DNRM2 * .. * .. External Subroutines .. EXTERNAL DCOPY, DLAED4, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, SIGN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( K.LT.0 ) THEN INFO = -1 ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX( 1, K ) ) THEN INFO = -2 ELSE IF( MAX( 1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX( 1, K ) ) $ THEN INFO = -3 ELSE IF( N.LT.K ) THEN INFO = -4 ELSE IF( LDQ.LT.MAX( 1, K ) ) THEN INFO = -7 ELSE IF( LDS.LT.MAX( 1, K ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLAED9', -INFO ) RETURN END IF * * Quick return if possible * IF( K.EQ.0 ) $ RETURN * * Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can * be computed with high relative accuracy (barring over/underflow). * This is a problem on machines without a guard digit in * add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). * The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), * which on any of these machines zeros out the bottommost * bit of DLAMDA(I) if it is 1; this makes the subsequent * subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation * occurs. On binary machines with a guard digit (almost all * machines) it does not change DLAMDA(I) at all. On hexadecimal * and decimal machines with a guard digit, it slightly * changes the bottommost bits of DLAMDA(I). It does not account * for hexadecimal or decimal machines without guard digits * (we know of none). We use a subroutine call to compute * 2*DLAMBDA(I) to prevent optimizing compilers from eliminating * this code. * DO 10 I = 1, N DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I ) 10 CONTINUE * DO 20 J = KSTART, KSTOP CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO ) * * If the zero finder fails, the computation is terminated. * IF( INFO.NE.0 ) $ GO TO 120 20 CONTINUE * IF( K.EQ.1 .OR. K.EQ.2 ) THEN DO 40 I = 1, K DO 30 J = 1, K S( J, I ) = Q( J, I ) 30 CONTINUE 40 CONTINUE GO TO 120 END IF * * Compute updated W. * CALL DCOPY( K, W, 1, S, 1 ) * * Initialize W(I) = Q(I,I) * CALL DCOPY( K, Q, LDQ+1, W, 1 ) DO 70 J = 1, K DO 50 I = 1, J - 1 W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) ) 50 CONTINUE DO 60 I = J + 1, K W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) ) 60 CONTINUE 70 CONTINUE DO 80 I = 1, K W( I ) = SIGN( SQRT( -W( I ) ), S( I, 1 ) ) 80 CONTINUE * * Compute eigenvectors of the modified rank-1 modification. * DO 110 J = 1, K DO 90 I = 1, K Q( I, J ) = W( I ) / Q( I, J ) 90 CONTINUE TEMP = DNRM2( K, Q( 1, J ), 1 ) DO 100 I = 1, K S( I, J ) = Q( I, J ) / TEMP 100 CONTINUE 110 CONTINUE * 120 CONTINUE RETURN * * End of DLAED9 * END |