1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK,
$ INFO ) * * -- LAPACK auxiliary routine (version 3.2.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * June 2010 * * .. Scalar Arguments .. LOGICAL WANTQ INTEGER INFO, J1, LDQ, LDT, N, N1, N2 * .. * .. Array Arguments .. DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WORK( * ) * .. * * Purpose * ======= * * DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in * an upper quasi-triangular matrix T by an orthogonal similarity * transformation. * * T must be in Schur canonical form, that is, block upper triangular * with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block * has its diagonal elemnts equal and its off-diagonal elements of * opposite sign. * * Arguments * ========= * * WANTQ (input) LOGICAL * = .TRUE. : accumulate the transformation in the matrix Q; * = .FALSE.: do not accumulate the transformation. * * N (input) INTEGER * The order of the matrix T. N >= 0. * * T (input/output) DOUBLE PRECISION array, dimension (LDT,N) * On entry, the upper quasi-triangular matrix T, in Schur * canonical form. * On exit, the updated matrix T, again in Schur canonical form. * * LDT (input) INTEGER * The leading dimension of the array T. LDT >= max(1,N). * * Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) * On entry, if WANTQ is .TRUE., the orthogonal matrix Q. * On exit, if WANTQ is .TRUE., the updated matrix Q. * If WANTQ is .FALSE., Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. * LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N. * * J1 (input) INTEGER * The index of the first row of the first block T11. * * N1 (input) INTEGER * The order of the first block T11. N1 = 0, 1 or 2. * * N2 (input) INTEGER * The order of the second block T22. N2 = 0, 1 or 2. * * WORK (workspace) DOUBLE PRECISION array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * = 1: the transformed matrix T would be too far from Schur * form; the blocks are not swapped and T and Q are * unchanged. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) DOUBLE PRECISION TEN PARAMETER ( TEN = 1.0D+1 ) INTEGER LDD, LDX PARAMETER ( LDD = 4, LDX = 2 ) * .. * .. Local Scalars .. INTEGER IERR, J2, J3, J4, K, ND DOUBLE PRECISION CS, DNORM, EPS, SCALE, SMLNUM, SN, T11, T22, $ T33, TAU, TAU1, TAU2, TEMP, THRESH, WI1, WI2, $ WR1, WR2, XNORM * .. * .. Local Arrays .. DOUBLE PRECISION D( LDD, 4 ), U( 3 ), U1( 3 ), U2( 3 ), $ X( LDX, 2 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DLACPY, DLANV2, DLARFG, DLARFX, DLARTG, DLASY2, $ DROT * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Executable Statements .. * INFO = 0 * * Quick return if possible * IF( N.EQ.0 .OR. N1.EQ.0 .OR. N2.EQ.0 ) $ RETURN IF( J1+N1.GT.N ) $ RETURN * J2 = J1 + 1 J3 = J1 + 2 J4 = J1 + 3 * IF( N1.EQ.1 .AND. N2.EQ.1 ) THEN * * Swap two 1-by-1 blocks. * T11 = T( J1, J1 ) T22 = T( J2, J2 ) * * Determine the transformation to perform the interchange. * CALL DLARTG( T( J1, J2 ), T22-T11, CS, SN, TEMP ) * * Apply transformation to the matrix T. * IF( J3.LE.N ) $ CALL DROT( N-J1-1, T( J1, J3 ), LDT, T( J2, J3 ), LDT, CS, $ SN ) CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN ) * T( J1, J1 ) = T22 T( J2, J2 ) = T11 * IF( WANTQ ) THEN * * Accumulate transformation in the matrix Q. * CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN ) END IF * ELSE * * Swapping involves at least one 2-by-2 block. * * Copy the diagonal block of order N1+N2 to the local array D * and compute its norm. * ND = N1 + N2 CALL DLACPY( 'Full', ND, ND, T( J1, J1 ), LDT, D, LDD ) DNORM = DLANGE( 'Max', ND, ND, D, LDD, WORK ) * * Compute machine-dependent threshold for test for accepting * swap. * EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) / EPS THRESH = MAX( TEN*EPS*DNORM, SMLNUM ) * * Solve T11*X - X*T22 = scale*T12 for X. * CALL DLASY2( .FALSE., .FALSE., -1, N1, N2, D, LDD, $ D( N1+1, N1+1 ), LDD, D( 1, N1+1 ), LDD, SCALE, X, $ LDX, XNORM, IERR ) * * Swap the adjacent diagonal blocks. * K = N1 + N1 + N2 - 3 GO TO ( 10, 20, 30 )K * 10 CONTINUE * * N1 = 1, N2 = 2: generate elementary reflector H so that: * * ( scale, X11, X12 ) H = ( 0, 0, * ) * U( 1 ) = SCALE U( 2 ) = X( 1, 1 ) U( 3 ) = X( 1, 2 ) CALL DLARFG( 3, U( 3 ), U, 1, TAU ) U( 3 ) = ONE T11 = T( J1, J1 ) * * Perform swap provisionally on diagonal block in D. * CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK ) CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK ) * * Test whether to reject swap. * IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 3, $ 3 )-T11 ) ).GT.THRESH )GO TO 50 * * Accept swap: apply transformation to the entire matrix T. * CALL DLARFX( 'L', 3, N-J1+1, U, TAU, T( J1, J1 ), LDT, WORK ) CALL DLARFX( 'R', J2, 3, U, TAU, T( 1, J1 ), LDT, WORK ) * T( J3, J1 ) = ZERO T( J3, J2 ) = ZERO T( J3, J3 ) = T11 * IF( WANTQ ) THEN * * Accumulate transformation in the matrix Q. * CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK ) END IF GO TO 40 * 20 CONTINUE * * N1 = 2, N2 = 1: generate elementary reflector H so that: * * H ( -X11 ) = ( * ) * ( -X21 ) = ( 0 ) * ( scale ) = ( 0 ) * U( 1 ) = -X( 1, 1 ) U( 2 ) = -X( 2, 1 ) U( 3 ) = SCALE CALL DLARFG( 3, U( 1 ), U( 2 ), 1, TAU ) U( 1 ) = ONE T33 = T( J3, J3 ) * * Perform swap provisionally on diagonal block in D. * CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK ) CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK ) * * Test whether to reject swap. * IF( MAX( ABS( D( 2, 1 ) ), ABS( D( 3, 1 ) ), ABS( D( 1, $ 1 )-T33 ) ).GT.THRESH )GO TO 50 * * Accept swap: apply transformation to the entire matrix T. * CALL DLARFX( 'R', J3, 3, U, TAU, T( 1, J1 ), LDT, WORK ) CALL DLARFX( 'L', 3, N-J1, U, TAU, T( J1, J2 ), LDT, WORK ) * T( J1, J1 ) = T33 T( J2, J1 ) = ZERO T( J3, J1 ) = ZERO * IF( WANTQ ) THEN * * Accumulate transformation in the matrix Q. * CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK ) END IF GO TO 40 * 30 CONTINUE * * N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so * that: * * H(2) H(1) ( -X11 -X12 ) = ( * * ) * ( -X21 -X22 ) ( 0 * ) * ( scale 0 ) ( 0 0 ) * ( 0 scale ) ( 0 0 ) * U1( 1 ) = -X( 1, 1 ) U1( 2 ) = -X( 2, 1 ) U1( 3 ) = SCALE CALL DLARFG( 3, U1( 1 ), U1( 2 ), 1, TAU1 ) U1( 1 ) = ONE * TEMP = -TAU1*( X( 1, 2 )+U1( 2 )*X( 2, 2 ) ) U2( 1 ) = -TEMP*U1( 2 ) - X( 2, 2 ) U2( 2 ) = -TEMP*U1( 3 ) U2( 3 ) = SCALE CALL DLARFG( 3, U2( 1 ), U2( 2 ), 1, TAU2 ) U2( 1 ) = ONE * * Perform swap provisionally on diagonal block in D. * CALL DLARFX( 'L', 3, 4, U1, TAU1, D, LDD, WORK ) CALL DLARFX( 'R', 4, 3, U1, TAU1, D, LDD, WORK ) CALL DLARFX( 'L', 3, 4, U2, TAU2, D( 2, 1 ), LDD, WORK ) CALL DLARFX( 'R', 4, 3, U2, TAU2, D( 1, 2 ), LDD, WORK ) * * Test whether to reject swap. * IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 4, 1 ) ), $ ABS( D( 4, 2 ) ) ).GT.THRESH )GO TO 50 * * Accept swap: apply transformation to the entire matrix T. * CALL DLARFX( 'L', 3, N-J1+1, U1, TAU1, T( J1, J1 ), LDT, WORK ) CALL DLARFX( 'R', J4, 3, U1, TAU1, T( 1, J1 ), LDT, WORK ) CALL DLARFX( 'L', 3, N-J1+1, U2, TAU2, T( J2, J1 ), LDT, WORK ) CALL DLARFX( 'R', J4, 3, U2, TAU2, T( 1, J2 ), LDT, WORK ) * T( J3, J1 ) = ZERO T( J3, J2 ) = ZERO T( J4, J1 ) = ZERO T( J4, J2 ) = ZERO * IF( WANTQ ) THEN * * Accumulate transformation in the matrix Q. * CALL DLARFX( 'R', N, 3, U1, TAU1, Q( 1, J1 ), LDQ, WORK ) CALL DLARFX( 'R', N, 3, U2, TAU2, Q( 1, J2 ), LDQ, WORK ) END IF * 40 CONTINUE * IF( N2.EQ.2 ) THEN * * Standardize new 2-by-2 block T11 * CALL DLANV2( T( J1, J1 ), T( J1, J2 ), T( J2, J1 ), $ T( J2, J2 ), WR1, WI1, WR2, WI2, CS, SN ) CALL DROT( N-J1-1, T( J1, J1+2 ), LDT, T( J2, J1+2 ), LDT, $ CS, SN ) CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN ) IF( WANTQ ) $ CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN ) END IF * IF( N1.EQ.2 ) THEN * * Standardize new 2-by-2 block T22 * J3 = J1 + N2 J4 = J3 + 1 CALL DLANV2( T( J3, J3 ), T( J3, J4 ), T( J4, J3 ), $ T( J4, J4 ), WR1, WI1, WR2, WI2, CS, SN ) IF( J3+2.LE.N ) $ CALL DROT( N-J3-1, T( J3, J3+2 ), LDT, T( J4, J3+2 ), $ LDT, CS, SN ) CALL DROT( J3-1, T( 1, J3 ), 1, T( 1, J4 ), 1, CS, SN ) IF( WANTQ ) $ CALL DROT( N, Q( 1, J3 ), 1, Q( 1, J4 ), 1, CS, SN ) END IF * END IF RETURN * * Exit with INFO = 1 if swap was rejected. * 50 CONTINUE INFO = 1 RETURN * * End of DLAEXC * END |