DLAIC1
Purpose
DLAIC1 applies one step of incremental condition estimation in
its simplest version:
Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
lower triangular matrix L, such that
twonorm(L*x) = sest
Then DLAIC1 computes sestpr, s, c such that
the vector
[ s*x ]
xhat = [ c ]
is an approximate singular vector of
[ L 0 ]
Lhat = [ w**T gamma ]
in the sense that
twonorm(Lhat*xhat) = sestpr.
Depending on JOB, an estimate for the largest or smallest singular
value is computed.
Note that [s c]**T and sestpr**2 is an eigenpair of the system
diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
[ gamma ]
where alpha = x**T*w.
its simplest version:
Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
lower triangular matrix L, such that
twonorm(L*x) = sest
Then DLAIC1 computes sestpr, s, c such that
the vector
[ s*x ]
xhat = [ c ]
is an approximate singular vector of
[ L 0 ]
Lhat = [ w**T gamma ]
in the sense that
twonorm(Lhat*xhat) = sestpr.
Depending on JOB, an estimate for the largest or smallest singular
value is computed.
Note that [s c]**T and sestpr**2 is an eigenpair of the system
diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
[ gamma ]
where alpha = x**T*w.
Arguments
| JOB | 
 
(input) INTEGER
 
= 1: an estimate for the largest singular value is computed. 
= 2: an estimate for the smallest singular value is computed.  | 
| J | 
 
(input) INTEGER
 
Length of X and W 
 | 
| X | 
 
(input) DOUBLE PRECISION array, dimension (J)
 
The j-vector x. 
 | 
| SEST | 
 
(input) DOUBLE PRECISION
 
Estimated singular value of j by j matrix L 
 | 
| W | 
 
(input) DOUBLE PRECISION array, dimension (J)
 
The j-vector w. 
 | 
| GAMMA | 
 
(input) DOUBLE PRECISION
 
The diagonal element gamma. 
 | 
| SESTPR | 
 
(output) DOUBLE PRECISION
 
Estimated singular value of (j+1) by (j+1) matrix Lhat. 
 | 
| S | 
 
(output) DOUBLE PRECISION
 
Sine needed in forming xhat. 
 | 
| C | 
 
(output) DOUBLE PRECISION
 
Cosine needed in forming xhat. 
 |