DLANV2
June 2010
Purpose
DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
matrix in standard form:
[ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
where either
1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
conjugate eigenvalues.
matrix in standard form:
[ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
where either
1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
conjugate eigenvalues.
Arguments
A |
(input/output) DOUBLE PRECISION
|
B |
(input/output) DOUBLE PRECISION
|
C |
(input/output) DOUBLE PRECISION
|
D |
(input/output) DOUBLE PRECISION
On entry, the elements of the input matrix.
On exit, they are overwritten by the elements of the standardised Schur form. |
RT1R |
(output) DOUBLE PRECISION
|
RT1I |
(output) DOUBLE PRECISION
|
RT2R |
(output) DOUBLE PRECISION
|
RT2I |
(output) DOUBLE PRECISION
The real and imaginary parts of the eigenvalues. If the
eigenvalues are a complex conjugate pair, RT1I > 0. |
CS |
(output) DOUBLE PRECISION
|
SN |
(output) DOUBLE PRECISION
Parameters of the rotation matrix.
|
Further Details
Modified by V. Sima, Research Institute for Informatics, Bucharest,
Romania, to reduce the risk of cancellation errors,
when computing real eigenvalues, and to ensure, if possible, that
abs(RT1R) >= abs(RT2R).
Romania, to reduce the risk of cancellation errors,
when computing real eigenvalues, and to ensure, if possible, that
abs(RT1R) >= abs(RT2R).