DLATRZ
Purpose
DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
[ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means
of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal
matrix and, R and A1 are M-by-M upper triangular matrices.
[ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means
of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal
matrix and, R and A1 are M-by-M upper triangular matrices.
Arguments
| M | 
 
(input) INTEGER
 
The number of rows of the matrix A.  M >= 0. 
 | 
| N | 
 
(input) INTEGER
 
The number of columns of the matrix A.  N >= 0. 
 | 
| L | 
 
(input) INTEGER
 
The number of columns of the matrix A containing the 
meaningful part of the Householder vectors. N-M >= L >= 0.  | 
| A | 
 
(input/output) DOUBLE PRECISION array, dimension (LDA,N)
 
On entry, the leading M-by-N upper trapezoidal part of the 
array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements N-L+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors.  | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,M). 
 | 
| TAU | 
 
(output) DOUBLE PRECISION array, dimension (M)
 
The scalar factors of the elementary reflectors. 
 | 
| WORK | 
 
(workspace) DOUBLE PRECISION array, dimension (M)
 
 | 
Further Details
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an l element vector. tau and z( k )
are chosen to annihilate the elements of the kth row of A2.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A2, such that the elements of z( k ) are
in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A1.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ),
( 0 )
( z( k ) )
tau is a scalar and z( k ) is an l element vector. tau and z( k )
are chosen to annihilate the elements of the kth row of A2.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A2, such that the elements of z( k ) are
in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A1.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).