1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
$ X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, $ TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO ) IMPLICIT NONE * * -- LAPACK routine (version 3.3.0) -- * * -- Contributed by Brian Sutton of the Randolph-Macon College -- * -- November 2010 * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER SIGNS, TRANS INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P, $ Q * .. * .. Array Arguments .. DOUBLE PRECISION PHI( * ), THETA( * ) DOUBLE PRECISION TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ), $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ), $ X21( LDX21, * ), X22( LDX22, * ) * .. * * Purpose * ======= * * DORBDB simultaneously bidiagonalizes the blocks of an M-by-M * partitioned orthogonal matrix X: * * [ B11 | B12 0 0 ] * [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**T * X = [-----------] = [---------] [----------------] [---------] . * [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ] * [ 0 | 0 0 I ] * * X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is * not the case, then X must be transposed and/or permuted. This can be * done in constant time using the TRANS and SIGNS options. See DORCSD * for details.) * * The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by- * (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are * represented implicitly by Householder vectors. * * B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented * implicitly by angles THETA, PHI. * * Arguments * ========= * * TRANS (input) CHARACTER * = 'T': X, U1, U2, V1T, and V2T are stored in row-major * order; * otherwise: X, U1, U2, V1T, and V2T are stored in column- * major order. * * SIGNS (input) CHARACTER * = 'O': The lower-left block is made nonpositive (the * "other" convention); * otherwise: The upper-right block is made nonpositive (the * "default" convention). * * M (input) INTEGER * The number of rows and columns in X. * * P (input) INTEGER * The number of rows in X11 and X12. 0 <= P <= M. * * Q (input) INTEGER * The number of columns in X11 and X21. 0 <= Q <= * MIN(P,M-P,M-Q). * * X11 (input/output) DOUBLE PRECISION array, dimension (LDX11,Q) * On entry, the top-left block of the orthogonal matrix to be * reduced. On exit, the form depends on TRANS: * If TRANS = 'N', then * the columns of tril(X11) specify reflectors for P1, * the rows of triu(X11,1) specify reflectors for Q1; * else TRANS = 'T', and * the rows of triu(X11) specify reflectors for P1, * the columns of tril(X11,-1) specify reflectors for Q1. * * LDX11 (input) INTEGER * The leading dimension of X11. If TRANS = 'N', then LDX11 >= * P; else LDX11 >= Q. * * X12 (input/output) DOUBLE PRECISION array, dimension (LDX12,M-Q) * On entry, the top-right block of the orthogonal matrix to * be reduced. On exit, the form depends on TRANS: * If TRANS = 'N', then * the rows of triu(X12) specify the first P reflectors for * Q2; * else TRANS = 'T', and * the columns of tril(X12) specify the first P reflectors * for Q2. * * LDX12 (input) INTEGER * The leading dimension of X12. If TRANS = 'N', then LDX12 >= * P; else LDX11 >= M-Q. * * X21 (input/output) DOUBLE PRECISION array, dimension (LDX21,Q) * On entry, the bottom-left block of the orthogonal matrix to * be reduced. On exit, the form depends on TRANS: * If TRANS = 'N', then * the columns of tril(X21) specify reflectors for P2; * else TRANS = 'T', and * the rows of triu(X21) specify reflectors for P2. * * LDX21 (input) INTEGER * The leading dimension of X21. If TRANS = 'N', then LDX21 >= * M-P; else LDX21 >= Q. * * X22 (input/output) DOUBLE PRECISION array, dimension (LDX22,M-Q) * On entry, the bottom-right block of the orthogonal matrix to * be reduced. On exit, the form depends on TRANS: * If TRANS = 'N', then * the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last * M-P-Q reflectors for Q2, * else TRANS = 'T', and * the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last * M-P-Q reflectors for P2. * * LDX22 (input) INTEGER * The leading dimension of X22. If TRANS = 'N', then LDX22 >= * M-P; else LDX22 >= M-Q. * * THETA (output) DOUBLE PRECISION array, dimension (Q) * The entries of the bidiagonal blocks B11, B12, B21, B22 can * be computed from the angles THETA and PHI. See Further * Details. * * PHI (output) DOUBLE PRECISION array, dimension (Q-1) * The entries of the bidiagonal blocks B11, B12, B21, B22 can * be computed from the angles THETA and PHI. See Further * Details. * * TAUP1 (output) DOUBLE PRECISION array, dimension (P) * The scalar factors of the elementary reflectors that define * P1. * * TAUP2 (output) DOUBLE PRECISION array, dimension (M-P) * The scalar factors of the elementary reflectors that define * P2. * * TAUQ1 (output) DOUBLE PRECISION array, dimension (Q) * The scalar factors of the elementary reflectors that define * Q1. * * TAUQ2 (output) DOUBLE PRECISION array, dimension (M-Q) * The scalar factors of the elementary reflectors that define * Q2. * * WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= M-Q. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * * Further Details * =============== * * The bidiagonal blocks B11, B12, B21, and B22 are represented * implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ..., * PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are * lower bidiagonal. Every entry in each bidiagonal band is a product * of a sine or cosine of a THETA with a sine or cosine of a PHI. See * [1] or DORCSD for details. * * P1, P2, Q1, and Q2 are represented as products of elementary * reflectors. See DORCSD for details on generating P1, P2, Q1, and Q2 * using DORGQR and DORGLQ. * * Reference * ========= * * [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. * Algorithms, 50(1):33-65, 2009. * * ==================================================================== * * .. Parameters .. DOUBLE PRECISION REALONE PARAMETER ( REALONE = 1.0D0 ) DOUBLE PRECISION NEGONE, ONE PARAMETER ( NEGONE = -1.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. LOGICAL COLMAJOR, LQUERY INTEGER I, LWORKMIN, LWORKOPT DOUBLE PRECISION Z1, Z2, Z3, Z4 * .. * .. External Subroutines .. EXTERNAL DAXPY, DLARF, DLARFGP, DSCAL, XERBLA * .. * .. External Functions .. DOUBLE PRECISION DNRM2 LOGICAL LSAME EXTERNAL DNRM2, LSAME * .. * .. Intrinsic Functions INTRINSIC ATAN2, COS, MAX, MIN, SIN * .. * .. Executable Statements .. * * Test input arguments * INFO = 0 COLMAJOR = .NOT. LSAME( TRANS, 'T' ) IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN Z1 = REALONE Z2 = REALONE Z3 = REALONE Z4 = REALONE ELSE Z1 = REALONE Z2 = -REALONE Z3 = REALONE Z4 = -REALONE END IF LQUERY = LWORK .EQ. -1 * IF( M .LT. 0 ) THEN INFO = -3 ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN INFO = -4 ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR. $ Q .GT. M-Q ) THEN INFO = -5 ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN INFO = -7 ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN INFO = -7 ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN INFO = -9 ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN INFO = -9 ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN INFO = -11 ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN INFO = -11 ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN INFO = -13 ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN INFO = -13 END IF * * Compute workspace * IF( INFO .EQ. 0 ) THEN LWORKOPT = M - Q LWORKMIN = M - Q WORK(1) = LWORKOPT IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN INFO = -21 END IF END IF IF( INFO .NE. 0 ) THEN CALL XERBLA( 'xORBDB', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Handle column-major and row-major separately * IF( COLMAJOR ) THEN * * Reduce columns 1, ..., Q of X11, X12, X21, and X22 * DO I = 1, Q * IF( I .EQ. 1 ) THEN CALL DSCAL( P-I+1, Z1, X11(I,I), 1 ) ELSE CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), 1 ) CALL DAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I,I-1), $ 1, X11(I,I), 1 ) END IF IF( I .EQ. 1 ) THEN CALL DSCAL( M-P-I+1, Z2, X21(I,I), 1 ) ELSE CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), 1 ) CALL DAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I,I-1), $ 1, X21(I,I), 1 ) END IF * THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), 1 ), $ DNRM2( P-I+1, X11(I,I), 1 ) ) * CALL DLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) ) X11(I,I) = ONE CALL DLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) ) X21(I,I) = ONE * CALL DLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I), $ X11(I,I+1), LDX11, WORK ) CALL DLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1, TAUP1(I), $ X12(I,I), LDX12, WORK ) CALL DLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, TAUP2(I), $ X21(I,I+1), LDX21, WORK ) CALL DLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1, TAUP2(I), $ X22(I,I), LDX22, WORK ) * IF( I .LT. Q ) THEN CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I,I+1), $ LDX11 ) CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I,I+1), LDX21, $ X11(I,I+1), LDX11 ) END IF CALL DSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), LDX12 ) CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), LDX22, $ X12(I,I), LDX12 ) * IF( I .LT. Q ) $ PHI(I) = ATAN2( DNRM2( Q-I, X11(I,I+1), LDX11 ), $ DNRM2( M-Q-I+1, X12(I,I), LDX12 ) ) * IF( I .LT. Q ) THEN CALL DLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11, $ TAUQ1(I) ) X11(I,I+1) = ONE END IF CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12, $ TAUQ2(I) ) X12(I,I) = ONE * IF( I .LT. Q ) THEN CALL DLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I), $ X11(I+1,I+1), LDX11, WORK ) CALL DLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I), $ X21(I+1,I+1), LDX21, WORK ) END IF CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I), $ X12(I+1,I), LDX12, WORK ) CALL DLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I), $ X22(I+1,I), LDX22, WORK ) * END DO * * Reduce columns Q + 1, ..., P of X12, X22 * DO I = Q + 1, P * CALL DSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), LDX12 ) CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12, $ TAUQ2(I) ) X12(I,I) = ONE * CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I), $ X12(I+1,I), LDX12, WORK ) IF( M-P-Q .GE. 1 ) $ CALL DLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12, $ TAUQ2(I), X22(Q+1,I), LDX22, WORK ) * END DO * * Reduce columns P + 1, ..., M - Q of X12, X22 * DO I = 1, M - P - Q * CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(Q+I,P+I), LDX22 ) CALL DLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1), $ LDX22, TAUQ2(P+I) ) X22(Q+I,P+I) = ONE CALL DLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22, $ TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK ) * END DO * ELSE * * Reduce columns 1, ..., Q of X11, X12, X21, X22 * DO I = 1, Q * IF( I .EQ. 1 ) THEN CALL DSCAL( P-I+1, Z1, X11(I,I), LDX11 ) ELSE CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), LDX11 ) CALL DAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I-1,I), $ LDX12, X11(I,I), LDX11 ) END IF IF( I .EQ. 1 ) THEN CALL DSCAL( M-P-I+1, Z2, X21(I,I), LDX21 ) ELSE CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), LDX21 ) CALL DAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I-1,I), $ LDX22, X21(I,I), LDX21 ) END IF * THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), LDX21 ), $ DNRM2( P-I+1, X11(I,I), LDX11 ) ) * CALL DLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) ) X11(I,I) = ONE CALL DLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21, $ TAUP2(I) ) X21(I,I) = ONE * CALL DLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I), $ X11(I+1,I), LDX11, WORK ) CALL DLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I), $ X12(I,I), LDX12, WORK ) CALL DLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I), $ X21(I+1,I), LDX21, WORK ) CALL DLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21, $ TAUP2(I), X22(I,I), LDX22, WORK ) * IF( I .LT. Q ) THEN CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I+1,I), 1 ) CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I+1,I), 1, $ X11(I+1,I), 1 ) END IF CALL DSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), 1 ) CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), 1, $ X12(I,I), 1 ) * IF( I .LT. Q ) $ PHI(I) = ATAN2( DNRM2( Q-I, X11(I+1,I), 1 ), $ DNRM2( M-Q-I+1, X12(I,I), 1 ) ) * IF( I .LT. Q ) THEN CALL DLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) ) X11(I+1,I) = ONE END IF CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) ) X12(I,I) = ONE * IF( I .LT. Q ) THEN CALL DLARF( 'L', Q-I, P-I, X11(I+1,I), 1, TAUQ1(I), $ X11(I+1,I+1), LDX11, WORK ) CALL DLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1, TAUQ1(I), $ X21(I+1,I+1), LDX21, WORK ) END IF CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I), $ X12(I,I+1), LDX12, WORK ) CALL DLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1, TAUQ2(I), $ X22(I,I+1), LDX22, WORK ) * END DO * * Reduce columns Q + 1, ..., P of X12, X22 * DO I = Q + 1, P * CALL DSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), 1 ) CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) ) X12(I,I) = ONE * CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I), $ X12(I,I+1), LDX12, WORK ) IF( M-P-Q .GE. 1 ) $ CALL DLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1, TAUQ2(I), $ X22(I,Q+1), LDX22, WORK ) * END DO * * Reduce columns P + 1, ..., M - Q of X12, X22 * DO I = 1, M - P - Q * CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(P+I,Q+I), 1 ) CALL DLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1, $ TAUQ2(P+I) ) X22(P+I,Q+I) = ONE * CALL DLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1, $ TAUQ2(P+I), X22(P+I,Q+I+1), LDX22, WORK ) * END DO * END IF * RETURN * * End of DORBDB * END |