1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
SUBROUTINE DORGL2( M, N, K, A, LDA, TAU, WORK, INFO )
* * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. INTEGER INFO, K, LDA, M, N * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * DORGL2 generates an m by n real matrix Q with orthonormal rows, * which is defined as the first m rows of a product of k elementary * reflectors of order n * * Q = H(k) . . . H(2) H(1) * * as returned by DGELQF. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix Q. M >= 0. * * N (input) INTEGER * The number of columns of the matrix Q. N >= M. * * K (input) INTEGER * The number of elementary reflectors whose product defines the * matrix Q. M >= K >= 0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) * On entry, the i-th row must contain the vector which defines * the elementary reflector H(i), for i = 1,2,...,k, as returned * by DGELQF in the first k rows of its array argument A. * On exit, the m-by-n matrix Q. * * LDA (input) INTEGER * The first dimension of the array A. LDA >= max(1,M). * * TAU (input) DOUBLE PRECISION array, dimension (K) * TAU(i) must contain the scalar factor of the elementary * reflector H(i), as returned by DGELQF. * * WORK (workspace) DOUBLE PRECISION array, dimension (M) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument has an illegal value * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J, L * .. * .. External Subroutines .. EXTERNAL DLARF, DSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.M ) THEN INFO = -2 ELSE IF( K.LT.0 .OR. K.GT.M ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DORGL2', -INFO ) RETURN END IF * * Quick return if possible * IF( M.LE.0 ) $ RETURN * IF( K.LT.M ) THEN * * Initialise rows k+1:m to rows of the unit matrix * DO 20 J = 1, N DO 10 L = K + 1, M A( L, J ) = ZERO 10 CONTINUE IF( J.GT.K .AND. J.LE.M ) $ A( J, J ) = ONE 20 CONTINUE END IF * DO 40 I = K, 1, -1 * * Apply H(i) to A(i:m,i:n) from the right * IF( I.LT.N ) THEN IF( I.LT.M ) THEN A( I, I ) = ONE CALL DLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, $ TAU( I ), A( I+1, I ), LDA, WORK ) END IF CALL DSCAL( N-I, -TAU( I ), A( I, I+1 ), LDA ) END IF A( I, I ) = ONE - TAU( I ) * * Set A(i,1:i-1) to zero * DO 30 L = 1, I - 1 A( I, L ) = ZERO 30 CONTINUE 40 CONTINUE RETURN * * End of DORGL2 * END |