1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
SUBROUTINE DPFTRI( TRANSR, UPLO, N, A, INFO )
* * -- LAPACK routine (version 3.3.1) -- * * -- Contributed by Fred Gustavson of the IBM Watson Research Center -- * -- April 2011 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER TRANSR, UPLO INTEGER INFO, N * .. Array Arguments .. DOUBLE PRECISION A( 0: * ) * .. * * Purpose * ======= * * DPFTRI computes the inverse of a (real) symmetric positive definite * matrix A using the Cholesky factorization A = U**T*U or A = L*L**T * computed by DPFTRF. * * Arguments * ========= * * TRANSR (input) CHARACTER*1 * = 'N': The Normal TRANSR of RFP A is stored; * = 'T': The Transpose TRANSR of RFP A is stored. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ) * On entry, the symmetric matrix A in RFP format. RFP format is * described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' * then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is * (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is * the transpose of RFP A as defined when * TRANSR = 'N'. The contents of RFP A are defined by UPLO as * follows: If UPLO = 'U' the RFP A contains the nt elements of * upper packed A. If UPLO = 'L' the RFP A contains the elements * of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = * 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N * is odd. See the Note below for more details. * * On exit, the symmetric inverse of the original matrix, in the * same storage format. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the (i,i) element of the factor U or L is * zero, and the inverse could not be computed. * * Further Details * =============== * * We first consider Rectangular Full Packed (RFP) Format when N is * even. We give an example where N = 6. * * AP is Upper AP is Lower * * 00 01 02 03 04 05 00 * 11 12 13 14 15 10 11 * 22 23 24 25 20 21 22 * 33 34 35 30 31 32 33 * 44 45 40 41 42 43 44 * 55 50 51 52 53 54 55 * * * Let TRANSR = 'N'. RFP holds AP as follows: * For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last * three columns of AP upper. The lower triangle A(4:6,0:2) consists of * the transpose of the first three columns of AP upper. * For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first * three columns of AP lower. The upper triangle A(0:2,0:2) consists of * the transpose of the last three columns of AP lower. * This covers the case N even and TRANSR = 'N'. * * RFP A RFP A * * 03 04 05 33 43 53 * 13 14 15 00 44 54 * 23 24 25 10 11 55 * 33 34 35 20 21 22 * 00 44 45 30 31 32 * 01 11 55 40 41 42 * 02 12 22 50 51 52 * * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the * transpose of RFP A above. One therefore gets: * * * RFP A RFP A * * 03 13 23 33 00 01 02 33 00 10 20 30 40 50 * 04 14 24 34 44 11 12 43 44 11 21 31 41 51 * 05 15 25 35 45 55 22 53 54 55 22 32 42 52 * * * We then consider Rectangular Full Packed (RFP) Format when N is * odd. We give an example where N = 5. * * AP is Upper AP is Lower * * 00 01 02 03 04 00 * 11 12 13 14 10 11 * 22 23 24 20 21 22 * 33 34 30 31 32 33 * 44 40 41 42 43 44 * * * Let TRANSR = 'N'. RFP holds AP as follows: * For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last * three columns of AP upper. The lower triangle A(3:4,0:1) consists of * the transpose of the first two columns of AP upper. * For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first * three columns of AP lower. The upper triangle A(0:1,1:2) consists of * the transpose of the last two columns of AP lower. * This covers the case N odd and TRANSR = 'N'. * * RFP A RFP A * * 02 03 04 00 33 43 * 12 13 14 10 11 44 * 22 23 24 20 21 22 * 00 33 34 30 31 32 * 01 11 44 40 41 42 * * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the * transpose of RFP A above. One therefore gets: * * RFP A RFP A * * 02 12 22 00 01 00 10 20 30 40 50 * 03 13 23 33 11 33 11 21 31 41 51 * 04 14 24 34 44 43 44 22 32 42 52 * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL LOWER, NISODD, NORMALTRANSR INTEGER N1, N2, K * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, DTFTRI, DLAUUM, DTRMM, DSYRK * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 NORMALTRANSR = LSAME( TRANSR, 'N' ) LOWER = LSAME( UPLO, 'L' ) IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN INFO = -1 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DPFTRI', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Invert the triangular Cholesky factor U or L. * CALL DTFTRI( TRANSR, UPLO, 'N', N, A, INFO ) IF( INFO.GT.0 ) $ RETURN * * If N is odd, set NISODD = .TRUE. * If N is even, set K = N/2 and NISODD = .FALSE. * IF( MOD( N, 2 ).EQ.0 ) THEN K = N / 2 NISODD = .FALSE. ELSE NISODD = .TRUE. END IF * * Set N1 and N2 depending on LOWER * IF( LOWER ) THEN N2 = N / 2 N1 = N - N2 ELSE N1 = N / 2 N2 = N - N1 END IF * * Start execution of triangular matrix multiply: inv(U)*inv(U)^C or * inv(L)^C*inv(L). There are eight cases. * IF( NISODD ) THEN * * N is odd * IF( NORMALTRANSR ) THEN * * N is odd and TRANSR = 'N' * IF( LOWER ) THEN * * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) ) * T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0) * T1 -> a(0), T2 -> a(n), S -> a(N1) * CALL DLAUUM( 'L', N1, A( 0 ), N, INFO ) CALL DSYRK( 'L', 'T', N1, N2, ONE, A( N1 ), N, ONE, $ A( 0 ), N ) CALL DTRMM( 'L', 'U', 'N', 'N', N2, N1, ONE, A( N ), N, $ A( N1 ), N ) CALL DLAUUM( 'U', N2, A( N ), N, INFO ) * ELSE * * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1) * T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0) * T1 -> a(N2), T2 -> a(N1), S -> a(0) * CALL DLAUUM( 'L', N1, A( N2 ), N, INFO ) CALL DSYRK( 'L', 'N', N1, N2, ONE, A( 0 ), N, ONE, $ A( N2 ), N ) CALL DTRMM( 'R', 'U', 'T', 'N', N1, N2, ONE, A( N1 ), N, $ A( 0 ), N ) CALL DLAUUM( 'U', N2, A( N1 ), N, INFO ) * END IF * ELSE * * N is odd and TRANSR = 'T' * IF( LOWER ) THEN * * SRPA for LOWER, TRANSPOSE, and N is odd * T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1) * CALL DLAUUM( 'U', N1, A( 0 ), N1, INFO ) CALL DSYRK( 'U', 'N', N1, N2, ONE, A( N1*N1 ), N1, ONE, $ A( 0 ), N1 ) CALL DTRMM( 'R', 'L', 'N', 'N', N1, N2, ONE, A( 1 ), N1, $ A( N1*N1 ), N1 ) CALL DLAUUM( 'L', N2, A( 1 ), N1, INFO ) * ELSE * * SRPA for UPPER, TRANSPOSE, and N is odd * T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0) * CALL DLAUUM( 'U', N1, A( N2*N2 ), N2, INFO ) CALL DSYRK( 'U', 'T', N1, N2, ONE, A( 0 ), N2, ONE, $ A( N2*N2 ), N2 ) CALL DTRMM( 'L', 'L', 'T', 'N', N2, N1, ONE, A( N1*N2 ), $ N2, A( 0 ), N2 ) CALL DLAUUM( 'L', N2, A( N1*N2 ), N2, INFO ) * END IF * END IF * ELSE * * N is even * IF( NORMALTRANSR ) THEN * * N is even and TRANSR = 'N' * IF( LOWER ) THEN * * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) * T1 -> a(1), T2 -> a(0), S -> a(k+1) * CALL DLAUUM( 'L', K, A( 1 ), N+1, INFO ) CALL DSYRK( 'L', 'T', K, K, ONE, A( K+1 ), N+1, ONE, $ A( 1 ), N+1 ) CALL DTRMM( 'L', 'U', 'N', 'N', K, K, ONE, A( 0 ), N+1, $ A( K+1 ), N+1 ) CALL DLAUUM( 'U', K, A( 0 ), N+1, INFO ) * ELSE * * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) * T1 -> a(k+1), T2 -> a(k), S -> a(0) * CALL DLAUUM( 'L', K, A( K+1 ), N+1, INFO ) CALL DSYRK( 'L', 'N', K, K, ONE, A( 0 ), N+1, ONE, $ A( K+1 ), N+1 ) CALL DTRMM( 'R', 'U', 'T', 'N', K, K, ONE, A( K ), N+1, $ A( 0 ), N+1 ) CALL DLAUUM( 'U', K, A( K ), N+1, INFO ) * END IF * ELSE * * N is even and TRANSR = 'T' * IF( LOWER ) THEN * * SRPA for LOWER, TRANSPOSE, and N is even (see paper) * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1), * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k * CALL DLAUUM( 'U', K, A( K ), K, INFO ) CALL DSYRK( 'U', 'N', K, K, ONE, A( K*( K+1 ) ), K, ONE, $ A( K ), K ) CALL DTRMM( 'R', 'L', 'N', 'N', K, K, ONE, A( 0 ), K, $ A( K*( K+1 ) ), K ) CALL DLAUUM( 'L', K, A( 0 ), K, INFO ) * ELSE * * SRPA for UPPER, TRANSPOSE, and N is even (see paper) * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0), * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k * CALL DLAUUM( 'U', K, A( K*( K+1 ) ), K, INFO ) CALL DSYRK( 'U', 'T', K, K, ONE, A( 0 ), K, ONE, $ A( K*( K+1 ) ), K ) CALL DTRMM( 'L', 'L', 'T', 'N', K, K, ONE, A( K*K ), K, $ A( 0 ), K ) CALL DLAUUM( 'L', K, A( K*K ), K, INFO ) * END IF * END IF * END IF * RETURN * * End of DPFTRI * END |