1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
SUBROUTINE DPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
* * -- LAPACK PROTOTYPE routine (version 3.2.2) -- * Craig Lucas, University of Manchester / NAG Ltd. * October, 2008 * * .. Scalar Arguments .. DOUBLE PRECISION TOL INTEGER INFO, LDA, N, RANK CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), WORK( 2*N ) INTEGER PIV( N ) * .. * * Purpose * ======= * * DPSTF2 computes the Cholesky factorization with complete * pivoting of a real symmetric positive semidefinite matrix A. * * The factorization has the form * P**T * A * P = U**T * U , if UPLO = 'U', * P**T * A * P = L * L**T, if UPLO = 'L', * where U is an upper triangular matrix and L is lower triangular, and * P is stored as vector PIV. * * This algorithm does not attempt to check that A is positive * semidefinite. This version of the algorithm calls level 2 BLAS. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored. * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) * On entry, the symmetric matrix A. If UPLO = 'U', the leading * n by n upper triangular part of A contains the upper * triangular part of the matrix A, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading n by n lower triangular part of A contains the lower * triangular part of the matrix A, and the strictly upper * triangular part of A is not referenced. * * On exit, if INFO = 0, the factor U or L from the Cholesky * factorization as above. * * PIV (output) INTEGER array, dimension (N) * PIV is such that the nonzero entries are P( PIV(K), K ) = 1. * * RANK (output) INTEGER * The rank of A given by the number of steps the algorithm * completed. * * TOL (input) DOUBLE PRECISION * User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) ) * will be used. The algorithm terminates at the (K-1)st step * if the pivot <= TOL. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * WORK (workspace) DOUBLE PRECISION array, dimension (2*N) * Work space. * * INFO (output) INTEGER * < 0: If INFO = -K, the K-th argument had an illegal value, * = 0: algorithm completed successfully, and * > 0: the matrix A is either rank deficient with computed rank * as returned in RANK, or is indefinite. See Section 7 of * LAPACK Working Note #161 for further information. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. DOUBLE PRECISION AJJ, DSTOP, DTEMP INTEGER I, ITEMP, J, PVT LOGICAL UPPER * .. * .. External Functions .. DOUBLE PRECISION DLAMCH LOGICAL LSAME, DISNAN EXTERNAL DLAMCH, LSAME, DISNAN * .. * .. External Subroutines .. EXTERNAL DGEMV, DSCAL, DSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT, MAXLOC * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DPSTF2', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Initialize PIV * DO 100 I = 1, N PIV( I ) = I 100 CONTINUE * * Compute stopping value * PVT = 1 AJJ = A( PVT, PVT ) DO I = 2, N IF( A( I, I ).GT.AJJ ) THEN PVT = I AJJ = A( PVT, PVT ) END IF END DO IF( AJJ.EQ.ZERO.OR.DISNAN( AJJ ) ) THEN RANK = 0 INFO = 1 GO TO 170 END IF * * Compute stopping value if not supplied * IF( TOL.LT.ZERO ) THEN DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ ELSE DSTOP = TOL END IF * * Set first half of WORK to zero, holds dot products * DO 110 I = 1, N WORK( I ) = 0 110 CONTINUE * IF( UPPER ) THEN * * Compute the Cholesky factorization P**T * A * P = U**T * U * DO 130 J = 1, N * * Find pivot, test for exit, else swap rows and columns * Update dot products, compute possible pivots which are * stored in the second half of WORK * DO 120 I = J, N * IF( J.GT.1 ) THEN WORK( I ) = WORK( I ) + A( J-1, I )**2 END IF WORK( N+I ) = A( I, I ) - WORK( I ) * 120 CONTINUE * IF( J.GT.1 ) THEN ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 ) PVT = ITEMP + J - 1 AJJ = WORK( N+PVT ) IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN A( J, J ) = AJJ GO TO 160 END IF END IF * IF( J.NE.PVT ) THEN * * Pivot OK, so can now swap pivot rows and columns * A( PVT, PVT ) = A( J, J ) CALL DSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 ) IF( PVT.LT.N ) $ CALL DSWAP( N-PVT, A( J, PVT+1 ), LDA, $ A( PVT, PVT+1 ), LDA ) CALL DSWAP( PVT-J-1, A( J, J+1 ), LDA, A( J+1, PVT ), 1 ) * * Swap dot products and PIV * DTEMP = WORK( J ) WORK( J ) = WORK( PVT ) WORK( PVT ) = DTEMP ITEMP = PIV( PVT ) PIV( PVT ) = PIV( J ) PIV( J ) = ITEMP END IF * AJJ = SQRT( AJJ ) A( J, J ) = AJJ * * Compute elements J+1:N of row J * IF( J.LT.N ) THEN CALL DGEMV( 'Trans', J-1, N-J, -ONE, A( 1, J+1 ), LDA, $ A( 1, J ), 1, ONE, A( J, J+1 ), LDA ) CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA ) END IF * 130 CONTINUE * ELSE * * Compute the Cholesky factorization P**T * A * P = L * L**T * DO 150 J = 1, N * * Find pivot, test for exit, else swap rows and columns * Update dot products, compute possible pivots which are * stored in the second half of WORK * DO 140 I = J, N * IF( J.GT.1 ) THEN WORK( I ) = WORK( I ) + A( I, J-1 )**2 END IF WORK( N+I ) = A( I, I ) - WORK( I ) * 140 CONTINUE * IF( J.GT.1 ) THEN ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 ) PVT = ITEMP + J - 1 AJJ = WORK( N+PVT ) IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN A( J, J ) = AJJ GO TO 160 END IF END IF * IF( J.NE.PVT ) THEN * * Pivot OK, so can now swap pivot rows and columns * A( PVT, PVT ) = A( J, J ) CALL DSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA ) IF( PVT.LT.N ) $ CALL DSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ), $ 1 ) CALL DSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ), LDA ) * * Swap dot products and PIV * DTEMP = WORK( J ) WORK( J ) = WORK( PVT ) WORK( PVT ) = DTEMP ITEMP = PIV( PVT ) PIV( PVT ) = PIV( J ) PIV( J ) = ITEMP END IF * AJJ = SQRT( AJJ ) A( J, J ) = AJJ * * Compute elements J+1:N of column J * IF( J.LT.N ) THEN CALL DGEMV( 'No Trans', N-J, J-1, -ONE, A( J+1, 1 ), LDA, $ A( J, 1 ), LDA, ONE, A( J+1, J ), 1 ) CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 ) END IF * 150 CONTINUE * END IF * * Ran to completion, A has full rank * RANK = N * GO TO 170 160 CONTINUE * * Rank is number of steps completed. Set INFO = 1 to signal * that the factorization cannot be used to solve a system. * RANK = J - 1 INFO = 1 * 170 CONTINUE RETURN * * End of DPSTF2 * END |