1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
SUBROUTINE DSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
$ LDZ, WORK, INFO ) * * -- LAPACK driver routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N * .. * .. Array Arguments .. DOUBLE PRECISION AB( LDAB, * ), BB( LDBB, * ), W( * ), $ WORK( * ), Z( LDZ, * ) * .. * * Purpose * ======= * * DSBGV computes all the eigenvalues, and optionally, the eigenvectors * of a real generalized symmetric-definite banded eigenproblem, of * the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric * and banded, and B is also positive definite. * * Arguments * ========= * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangles of A and B are stored; * = 'L': Lower triangles of A and B are stored. * * N (input) INTEGER * The order of the matrices A and B. N >= 0. * * KA (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KA >= 0. * * KB (input) INTEGER * The number of superdiagonals of the matrix B if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KB >= 0. * * AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) * On entry, the upper or lower triangle of the symmetric band * matrix A, stored in the first ka+1 rows of the array. The * j-th column of A is stored in the j-th column of the array AB * as follows: * if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). * * On exit, the contents of AB are destroyed. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KA+1. * * BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N) * On entry, the upper or lower triangle of the symmetric band * matrix B, stored in the first kb+1 rows of the array. The * j-th column of B is stored in the j-th column of the array BB * as follows: * if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; * if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). * * On exit, the factor S from the split Cholesky factorization * B = S**T*S, as returned by DPBSTF. * * LDBB (input) INTEGER * The leading dimension of the array BB. LDBB >= KB+1. * * W (output) DOUBLE PRECISION array, dimension (N) * If INFO = 0, the eigenvalues in ascending order. * * Z (output) DOUBLE PRECISION array, dimension (LDZ, N) * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of * eigenvectors, with the i-th column of Z holding the * eigenvector associated with W(i). The eigenvectors are * normalized so that Z**T*B*Z = I. * If JOBZ = 'N', then Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= N. * * WORK (workspace) DOUBLE PRECISION array, dimension (3*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, and i is: * <= N: the algorithm failed to converge: * i off-diagonal elements of an intermediate * tridiagonal form did not converge to zero; * > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF * returned INFO = i: B is not positive definite. * The factorization of B could not be completed and * no eigenvalues or eigenvectors were computed. * * ===================================================================== * * .. Local Scalars .. LOGICAL UPPER, WANTZ CHARACTER VECT INTEGER IINFO, INDE, INDWRK * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DPBSTF, DSBGST, DSBTRD, DSTEQR, DSTERF, XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * WANTZ = LSAME( JOBZ, 'V' ) UPPER = LSAME( UPLO, 'U' ) * INFO = 0 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( KA.LT.0 ) THEN INFO = -4 ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN INFO = -5 ELSE IF( LDAB.LT.KA+1 ) THEN INFO = -7 ELSE IF( LDBB.LT.KB+1 ) THEN INFO = -9 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSBGV ', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Form a split Cholesky factorization of B. * CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO ) IF( INFO.NE.0 ) THEN INFO = N + INFO RETURN END IF * * Transform problem to standard eigenvalue problem. * INDE = 1 INDWRK = INDE + N CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ, $ WORK( INDWRK ), IINFO ) * * Reduce to tridiagonal form. * IF( WANTZ ) THEN VECT = 'U' ELSE VECT = 'N' END IF CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ, $ WORK( INDWRK ), IINFO ) * * For eigenvalues only, call DSTERF. For eigenvectors, call SSTEQR. * IF( .NOT.WANTZ ) THEN CALL DSTERF( N, W, WORK( INDE ), INFO ) ELSE CALL DSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ), $ INFO ) END IF RETURN * * End of DSBGV * END |