1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
$ C ) * * -- LAPACK routine (version 3.3.1) -- * * -- Contributed by Julien Langou of the Univ. of Colorado Denver -- * -- April 2011 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. * .. Scalar Arguments .. DOUBLE PRECISION ALPHA, BETA INTEGER K, LDA, N CHARACTER TRANS, TRANSR, UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), C( * ) * .. * * Purpose * ======= * * Level 3 BLAS like routine for C in RFP Format. * * DSFRK performs one of the symmetric rank--k operations * * C := alpha*A*A**T + beta*C, * * or * * C := alpha*A**T*A + beta*C, * * where alpha and beta are real scalars, C is an n--by--n symmetric * matrix and A is an n--by--k matrix in the first case and a k--by--n * matrix in the second case. * * Arguments * ========== * * TRANSR (input) CHARACTER*1 * = 'N': The Normal Form of RFP A is stored; * = 'T': The Transpose Form of RFP A is stored. * * UPLO (input) CHARACTER*1 * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS (input) CHARACTER*1 * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. * * TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. * * Unchanged on exit. * * N (input) INTEGER * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K (input) INTEGER * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrix A, and on entry with TRANS = 'T' * or 't', K specifies the number of rows of the matrix A. K * must be at least zero. * Unchanged on exit. * * ALPHA (input) DOUBLE PRECISION * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A (input) DOUBLE PRECISION array, dimension (LDA,ka) * where KA * is K when TRANS = 'N' or 'n', and is N otherwise. Before * entry with TRANS = 'N' or 'n', the leading N--by--K part of * the array A must contain the matrix A, otherwise the leading * K--by--N part of the array A must contain the matrix A. * Unchanged on exit. * * LDA (input) INTEGER * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * BETA (input) DOUBLE PRECISION * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * * C (input/output) DOUBLE PRECISION array, dimension (NT) * NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP * Format. RFP Format is described by TRANSR, UPLO and N. * * ===================================================================== * * .. * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. LOGICAL LOWER, NORMALTRANSR, NISODD, NOTRANS INTEGER INFO, NROWA, J, NK, N1, N2 * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, DGEMM, DSYRK * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 NORMALTRANSR = LSAME( TRANSR, 'N' ) LOWER = LSAME( UPLO, 'L' ) NOTRANS = LSAME( TRANS, 'N' ) * IF( NOTRANS ) THEN NROWA = N ELSE NROWA = K END IF * IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN INFO = -1 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN INFO = -2 ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSFRK ', -INFO ) RETURN END IF * * Quick return if possible. * * The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not * done (it is in DSYRK for example) and left in the general case. * IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND. $ ( BETA.EQ.ONE ) ) )RETURN * IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN DO J = 1, ( ( N*( N+1 ) ) / 2 ) C( J ) = ZERO END DO RETURN END IF * * C is N-by-N. * If N is odd, set NISODD = .TRUE., and N1 and N2. * If N is even, NISODD = .FALSE., and NK. * IF( MOD( N, 2 ).EQ.0 ) THEN NISODD = .FALSE. NK = N / 2 ELSE NISODD = .TRUE. IF( LOWER ) THEN N2 = N / 2 N1 = N - N2 ELSE N1 = N / 2 N2 = N - N1 END IF END IF * IF( NISODD ) THEN * * N is odd * IF( NORMALTRANSR ) THEN * * N is odd and TRANSR = 'N' * IF( LOWER ) THEN * * N is odd, TRANSR = 'N', and UPLO = 'L' * IF( NOTRANS ) THEN * * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' * CALL DSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 1 ), N ) CALL DSYRK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA, $ BETA, C( N+1 ), N ) CALL DGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ), $ LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N ) * ELSE * * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'T' * CALL DSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 1 ), N ) CALL DSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA, $ BETA, C( N+1 ), N ) CALL DGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ), $ LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N ) * END IF * ELSE * * N is odd, TRANSR = 'N', and UPLO = 'U' * IF( NOTRANS ) THEN * * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' * CALL DSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( N2+1 ), N ) CALL DSYRK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA, $ BETA, C( N1+1 ), N ) CALL DGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ), $ LDA, A( N2, 1 ), LDA, BETA, C( 1 ), N ) * ELSE * * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'T' * CALL DSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( N2+1 ), N ) CALL DSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N2 ), LDA, $ BETA, C( N1+1 ), N ) CALL DGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ), $ LDA, A( 1, N2 ), LDA, BETA, C( 1 ), N ) * END IF * END IF * ELSE * * N is odd, and TRANSR = 'T' * IF( LOWER ) THEN * * N is odd, TRANSR = 'T', and UPLO = 'L' * IF( NOTRANS ) THEN * * N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'N' * CALL DSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 1 ), N1 ) CALL DSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA, $ BETA, C( 2 ), N1 ) CALL DGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ), $ LDA, A( N1+1, 1 ), LDA, BETA, $ C( N1*N1+1 ), N1 ) * ELSE * * N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'T' * CALL DSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 1 ), N1 ) CALL DSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA, $ BETA, C( 2 ), N1 ) CALL DGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ), $ LDA, A( 1, N1+1 ), LDA, BETA, $ C( N1*N1+1 ), N1 ) * END IF * ELSE * * N is odd, TRANSR = 'T', and UPLO = 'U' * IF( NOTRANS ) THEN * * N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'N' * CALL DSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( N2*N2+1 ), N2 ) CALL DSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA, $ BETA, C( N1*N2+1 ), N2 ) CALL DGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ), $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 ) * ELSE * * N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'T' * CALL DSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( N2*N2+1 ), N2 ) CALL DSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA, $ BETA, C( N1*N2+1 ), N2 ) CALL DGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ), $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 ) * END IF * END IF * END IF * ELSE * * N is even * IF( NORMALTRANSR ) THEN * * N is even and TRANSR = 'N' * IF( LOWER ) THEN * * N is even, TRANSR = 'N', and UPLO = 'L' * IF( NOTRANS ) THEN * * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' * CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 2 ), N+1 ) CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA, $ BETA, C( 1 ), N+1 ) CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ), $ LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ), $ N+1 ) * ELSE * * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'T' * CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 2 ), N+1 ) CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA, $ BETA, C( 1 ), N+1 ) CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ), $ LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ), $ N+1 ) * END IF * ELSE * * N is even, TRANSR = 'N', and UPLO = 'U' * IF( NOTRANS ) THEN * * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' * CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK+2 ), N+1 ) CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA, $ BETA, C( NK+1 ), N+1 ) CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ), $ LDA, A( NK+1, 1 ), LDA, BETA, C( 1 ), $ N+1 ) * ELSE * * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'T' * CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK+2 ), N+1 ) CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA, $ BETA, C( NK+1 ), N+1 ) CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ), $ LDA, A( 1, NK+1 ), LDA, BETA, C( 1 ), $ N+1 ) * END IF * END IF * ELSE * * N is even, and TRANSR = 'T' * IF( LOWER ) THEN * * N is even, TRANSR = 'T', and UPLO = 'L' * IF( NOTRANS ) THEN * * N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'N' * CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK+1 ), NK ) CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA, $ BETA, C( 1 ), NK ) CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ), $ LDA, A( NK+1, 1 ), LDA, BETA, $ C( ( ( NK+1 )*NK )+1 ), NK ) * ELSE * * N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'T' * CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK+1 ), NK ) CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA, $ BETA, C( 1 ), NK ) CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ), $ LDA, A( 1, NK+1 ), LDA, BETA, $ C( ( ( NK+1 )*NK )+1 ), NK ) * END IF * ELSE * * N is even, TRANSR = 'T', and UPLO = 'U' * IF( NOTRANS ) THEN * * N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'N' * CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK*( NK+1 )+1 ), NK ) CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA, $ BETA, C( NK*NK+1 ), NK ) CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ), $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK ) * ELSE * * N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'T' * CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK*( NK+1 )+1 ), NK ) CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA, $ BETA, C( NK*NK+1 ), NK ) CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ), $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK ) * END IF * END IF * END IF * END IF * RETURN * * End of DSFRK * END |