1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
$ INFO ) * * -- LAPACK driver routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO INTEGER INFO, ITYPE, LDZ, N * .. * .. Array Arguments .. DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ), $ Z( LDZ, * ) * .. * * Purpose * ======= * * DSPGV computes all the eigenvalues and, optionally, the eigenvectors * of a real generalized symmetric-definite eigenproblem, of the form * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. * Here A and B are assumed to be symmetric, stored in packed format, * and B is also positive definite. * * Arguments * ========= * * ITYPE (input) INTEGER * Specifies the problem type to be solved: * = 1: A*x = (lambda)*B*x * = 2: A*B*x = (lambda)*x * = 3: B*A*x = (lambda)*x * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangles of A and B are stored; * = 'L': Lower triangles of A and B are stored. * * N (input) INTEGER * The order of the matrices A and B. N >= 0. * * AP (input/output) DOUBLE PRECISION array, dimension * (N*(N+1)/2) * On entry, the upper or lower triangle of the symmetric matrix * A, packed columnwise in a linear array. The j-th column of A * is stored in the array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. * * On exit, the contents of AP are destroyed. * * BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) * On entry, the upper or lower triangle of the symmetric matrix * B, packed columnwise in a linear array. The j-th column of B * is stored in the array BP as follows: * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. * * On exit, the triangular factor U or L from the Cholesky * factorization B = U**T*U or B = L*L**T, in the same storage * format as B. * * W (output) DOUBLE PRECISION array, dimension (N) * If INFO = 0, the eigenvalues in ascending order. * * Z (output) DOUBLE PRECISION array, dimension (LDZ, N) * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of * eigenvectors. The eigenvectors are normalized as follows: * if ITYPE = 1 or 2, Z**T*B*Z = I; * if ITYPE = 3, Z**T*inv(B)*Z = I. * If JOBZ = 'N', then Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= max(1,N). * * WORK (workspace) DOUBLE PRECISION array, dimension (3*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: DPPTRF or DSPEV returned an error code: * <= N: if INFO = i, DSPEV failed to converge; * i off-diagonal elements of an intermediate * tridiagonal form did not converge to zero. * > N: if INFO = n + i, for 1 <= i <= n, then the leading * minor of order i of B is not positive definite. * The factorization of B could not be completed and * no eigenvalues or eigenvectors were computed. * * ===================================================================== * * .. Local Scalars .. LOGICAL UPPER, WANTZ CHARACTER TRANS INTEGER J, NEIG * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DPPTRF, DSPEV, DSPGST, DTPMV, DTPSV, XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * WANTZ = LSAME( JOBZ, 'V' ) UPPER = LSAME( UPLO, 'U' ) * INFO = 0 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN INFO = -1 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN INFO = -2 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSPGV ', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Form a Cholesky factorization of B. * CALL DPPTRF( UPLO, N, BP, INFO ) IF( INFO.NE.0 ) THEN INFO = N + INFO RETURN END IF * * Transform problem to standard eigenvalue problem and solve. * CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO ) CALL DSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO ) * IF( WANTZ ) THEN * * Backtransform eigenvectors to the original problem. * NEIG = N IF( INFO.GT.0 ) $ NEIG = INFO - 1 IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN * * For A*x=(lambda)*B*x and A*B*x=(lambda)*x; * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y * IF( UPPER ) THEN TRANS = 'N' ELSE TRANS = 'T' END IF * DO 10 J = 1, NEIG CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ), $ 1 ) 10 CONTINUE * ELSE IF( ITYPE.EQ.3 ) THEN * * For B*A*x=(lambda)*x; * backtransform eigenvectors: x = L*y or U**T*y * IF( UPPER ) THEN TRANS = 'T' ELSE TRANS = 'N' END IF * DO 20 J = 1, NEIG CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ), $ 1 ) 20 CONTINUE END IF END IF RETURN * * End of DSPGV * END |