DSPGVX

Purpose

DSPGVX computes selected eigenvalues, and optionally, eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A
and B are assumed to be symmetric, stored in packed storage, and B
is also positive definite.  Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices
for the desired eigenvalues.

Arguments

ITYPE
(input) INTEGER
Specifies the problem type to be solved:
= 1:  A*x = (lambda)*B*x
= 2:  A*B*x = (lambda)*x
= 3:  B*A*x = (lambda)*x
JOBZ
(input) CHARACTER*1
= 'N':  Compute eigenvalues only;
= 'V':  Compute eigenvalues and eigenvectors.
RANGE
(input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU]
       will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
UPLO
(input) CHARACTER*1
= 'U':  Upper triangle of A and B are stored;
= 'L':  Lower triangle of A and B are stored.
N
(input) INTEGER
The order of the matrix pencil (A,B).  N >= 0.
AP
(input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

On exit, the contents of AP are destroyed.
BP
(input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
B, packed columnwise in a linear array.  The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

On exit, the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T, in the same storage
format as B.
VL
(input) DOUBLE PRECISION
VU
(input) DOUBLE PRECISION
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL
(input) INTEGER
IU
(input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL
(input) DOUBLE PRECISION
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to

        ABSTOL + EPS *   max( |a|,|b| ) ,

where EPS is the machine precision.  If ABSTOL is less than
or equal to zero, then  EPS*|T|  will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.

Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH('S').
M
(output) INTEGER
The total number of eigenvalues found.  0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W
(output) DOUBLE PRECISION array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z
(output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
If JOBZ = 'N', then Z is not referenced.
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.

If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
LDZ
(input) INTEGER
The leading dimension of the array Z.  LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
(workspace) DOUBLE PRECISION array, dimension (8*N)
IWORK
(workspace) INTEGER array, dimension (5*N)
IFAIL
(output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero.  If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
INFO
(output) INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  DPPTRF or DSPEVX returned an error code:
   <= N:  if INFO = i, DSPEVX failed to converge;
          i eigenvectors failed to converge.  Their indices
          are stored in array IFAIL.
   > N:   if INFO = N + i, for 1 <= i <= N, then the leading
          minor of order i of B is not positive definite.
          The factorization of B could not be completed and
          no eigenvalues or eigenvectors were computed.

Further Details

Based on contributions by
   Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Call Graph

Caller Graph