DSPTRS
Purpose
DSPTRS solves a system of linear equations A*X = B with a real
symmetric matrix A stored in packed format using the factorization
A = U*D*U**T or A = L*D*L**T computed by DSPTRF.
symmetric matrix A stored in packed format using the factorization
A = U*D*U**T or A = L*D*L**T computed by DSPTRF.
Arguments
| UPLO | 
(input) CHARACTER*1
 
Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. | 
| N | 
(input) INTEGER
 
The order of the matrix A.  N >= 0. | 
| NRHS | 
(input) INTEGER
 
The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. | 
| AP | 
(input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 
The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by DSPTRF, stored as a packed triangular matrix. | 
| IPIV | 
(input) INTEGER array, dimension (N)
 
Details of the interchanges and the block structure of D as determined by DSPTRF. | 
| B | 
(input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
 
On entry, the right hand side matrix B. On exit, the solution matrix X. | 
| LDB | 
(input) INTEGER
 
The leading dimension of the array B.  LDB >= max(1,N). | 
| INFO | 
(output) INTEGER
 
= 0:  successful exit < 0: if INFO = -i, the i-th argument had an illegal value |