1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
$ LIWORK, INFO ) * * -- LAPACK driver routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO INTEGER INFO, LDA, LIWORK, LWORK, N * .. * .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * ) * .. * * Purpose * ======= * * DSYEVD computes all eigenvalues and, optionally, eigenvectors of a * real symmetric matrix A. If eigenvectors are desired, it uses a * divide and conquer algorithm. * * The divide and conquer algorithm makes very mild assumptions about * floating point arithmetic. It will work on machines with a guard * digit in add/subtract, or on those binary machines without guard * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or * Cray-2. It could conceivably fail on hexadecimal or decimal machines * without guard digits, but we know of none. * * Because of large use of BLAS of level 3, DSYEVD needs N**2 more * workspace than DSYEVX. * * Arguments * ========= * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA, N) * On entry, the symmetric matrix A. If UPLO = 'U', the * leading N-by-N upper triangular part of A contains the * upper triangular part of the matrix A. If UPLO = 'L', * the leading N-by-N lower triangular part of A contains * the lower triangular part of the matrix A. * On exit, if JOBZ = 'V', then if INFO = 0, A contains the * orthonormal eigenvectors of the matrix A. * If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') * or the upper triangle (if UPLO='U') of A, including the * diagonal, is destroyed. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * W (output) DOUBLE PRECISION array, dimension (N) * If INFO = 0, the eigenvalues in ascending order. * * WORK (workspace/output) DOUBLE PRECISION array, * dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. * If N <= 1, LWORK must be at least 1. * If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1. * If JOBZ = 'V' and N > 1, LWORK must be at least * 1 + 6*N + 2*N**2. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal sizes of the WORK and IWORK * arrays, returns these values as the first entries of the WORK * and IWORK arrays, and no error message related to LWORK or * LIWORK is issued by XERBLA. * * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. * * LIWORK (input) INTEGER * The dimension of the array IWORK. * If N <= 1, LIWORK must be at least 1. * If JOBZ = 'N' and N > 1, LIWORK must be at least 1. * If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. * * If LIWORK = -1, then a workspace query is assumed; the * routine only calculates the optimal sizes of the WORK and * IWORK arrays, returns these values as the first entries of * the WORK and IWORK arrays, and no error message related to * LWORK or LIWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i and JOBZ = 'N', then the algorithm failed * to converge; i off-diagonal elements of an intermediate * tridiagonal form did not converge to zero; * if INFO = i and JOBZ = 'V', then the algorithm failed * to compute an eigenvalue while working on the submatrix * lying in rows and columns INFO/(N+1) through * mod(INFO,N+1). * * Further Details * =============== * * Based on contributions by * Jeff Rutter, Computer Science Division, University of California * at Berkeley, USA * Modified by Francoise Tisseur, University of Tennessee. * * Modified description of INFO. Sven, 16 Feb 05. * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. * LOGICAL LOWER, LQUERY, WANTZ INTEGER IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE, $ LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, $ SMLNUM * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV DOUBLE PRECISION DLAMCH, DLANSY EXTERNAL LSAME, DLAMCH, DLANSY, ILAENV * .. * .. External Subroutines .. EXTERNAL DLACPY, DLASCL, DORMTR, DSCAL, DSTEDC, DSTERF, $ DSYTRD, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * WANTZ = LSAME( JOBZ, 'V' ) LOWER = LSAME( UPLO, 'L' ) LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) * INFO = 0 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 END IF * IF( INFO.EQ.0 ) THEN IF( N.LE.1 ) THEN LIWMIN = 1 LWMIN = 1 LOPT = LWMIN LIOPT = LIWMIN ELSE IF( WANTZ ) THEN LIWMIN = 3 + 5*N LWMIN = 1 + 6*N + 2*N**2 ELSE LIWMIN = 1 LWMIN = 2*N + 1 END IF LOPT = MAX( LWMIN, 2*N + $ ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) ) LIOPT = LIWMIN END IF WORK( 1 ) = LOPT IWORK( 1 ) = LIOPT * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -8 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSYEVD', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * IF( N.EQ.1 ) THEN W( 1 ) = A( 1, 1 ) IF( WANTZ ) $ A( 1, 1 ) = ONE RETURN END IF * * Get machine constants. * SAFMIN = DLAMCH( 'Safe minimum' ) EPS = DLAMCH( 'Precision' ) SMLNUM = SAFMIN / EPS BIGNUM = ONE / SMLNUM RMIN = SQRT( SMLNUM ) RMAX = SQRT( BIGNUM ) * * Scale matrix to allowable range, if necessary. * ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK ) ISCALE = 0 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN ISCALE = 1 SIGMA = RMIN / ANRM ELSE IF( ANRM.GT.RMAX ) THEN ISCALE = 1 SIGMA = RMAX / ANRM END IF IF( ISCALE.EQ.1 ) $ CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO ) * * Call DSYTRD to reduce symmetric matrix to tridiagonal form. * INDE = 1 INDTAU = INDE + N INDWRK = INDTAU + N LLWORK = LWORK - INDWRK + 1 INDWK2 = INDWRK + N*N LLWRK2 = LWORK - INDWK2 + 1 * CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ), $ WORK( INDWRK ), LLWORK, IINFO ) LOPT = 2*N + WORK( INDWRK ) * * For eigenvalues only, call DSTERF. For eigenvectors, first call * DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the * tridiagonal matrix, then call DORMTR to multiply it by the * Householder transformations stored in A. * IF( .NOT.WANTZ ) THEN CALL DSTERF( N, W, WORK( INDE ), INFO ) ELSE CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N, $ WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO ) CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ), $ WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO ) CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA ) LOPT = MAX( LOPT, 1+6*N+2*N**2 ) END IF * * If matrix was scaled, then rescale eigenvalues appropriately. * IF( ISCALE.EQ.1 ) $ CALL DSCAL( N, ONE / SIGMA, W, 1 ) * WORK( 1 ) = LOPT IWORK( 1 ) = LIOPT * RETURN * * End of DSYEVD * END |