DSYTD2

Purpose

DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
form T by an orthogonal similarity transformation: Q**T * A * Q = T.

Arguments

UPLO
(input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U':  Upper triangular
= 'L':  Lower triangular
N
(input) INTEGER
The order of the matrix A.  N >= 0.
A
(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A.  If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced.  If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA
(input) INTEGER
The leading dimension of the array A.  LDA >= max(1,N).
D
(output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E
(output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU
(output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
INFO
(output) INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value.

Further Details

If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors

   Q = H(n-1) . . . H(2) H(1).

Each H(i) has the form

   H(i) = I - tau * v * v**T

where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).

If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors

   Q = H(1) H(2) . . . H(n-1).

Each H(i) has the form

   H(i) = I - tau * v * v**T

where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).

The contents of A on exit are illustrated by the following examples
with n = 5:

if UPLO = 'U':                       if UPLO = 'L':

  (  d   e   v2  v3  v4 )              (  d                  )
  (      d   e   v3  v4 )              (  e   d              )
  (          d   e   v4 )              (  v1  e   d          )
  (              d   e  )              (  v1  v2  e   d      )
  (                  d  )              (  v1  v2  v3  e   d  )

where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).

Call Graph

Caller Graph