DTPCON
   November 2006
Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
Purpose
DTPCON estimates the reciprocal of the condition number of a packed
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
triangular matrix A, in either the 1-norm or the infinity-norm.
The norm of A is computed and an estimate is obtained for
norm(inv(A)), then the reciprocal of the condition number is
computed as
RCOND = 1 / ( norm(A) * norm(inv(A)) ).
Arguments
| NORM | 
 
(input) CHARACTER*1
 
Specifies whether the 1-norm condition number or the 
infinity-norm condition number is required: = '1' or 'O': 1-norm; = 'I': Infinity-norm.  | 
| UPLO | 
 
(input) CHARACTER*1
 
= 'U':  A is upper triangular; 
= 'L': A is lower triangular.  | 
| DIAG | 
 
(input) CHARACTER*1
 
= 'N':  A is non-unit triangular; 
= 'U': A is unit triangular.  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| AP | 
 
(input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
 
The upper or lower triangular matrix A, packed columnwise in 
a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1.  | 
| RCOND | 
 
(output) DOUBLE PRECISION
 
The reciprocal of the condition number of the matrix A, 
computed as RCOND = 1/(norm(A) * norm(inv(A))).  | 
| WORK | 
 
(workspace) DOUBLE PRECISION array, dimension (3*N)
 
 | 
| IWORK | 
 
(workspace) INTEGER array, dimension (N)
 
 | 
| INFO | 
 
(output) INTEGER
 
= 0:  successful exit 
< 0: if INFO = -i, the i-th argument had an illegal value  |