DTRTRS
   November 2006
Purpose
DTRTRS solves a triangular system of the form
A * X = B or A**T * X = B,
where A is a triangular matrix of order N, and B is an N-by-NRHS
matrix. A check is made to verify that A is nonsingular.
A * X = B or A**T * X = B,
where A is a triangular matrix of order N, and B is an N-by-NRHS
matrix. A check is made to verify that A is nonsingular.
Arguments
| UPLO | 
 
(input) CHARACTER*1
 
= 'U':  A is upper triangular; 
= 'L': A is lower triangular.  | 
| TRANS | 
 
(input) CHARACTER*1
 
Specifies the form of the system of equations: 
= 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose)  | 
| DIAG | 
 
(input) CHARACTER*1
 
= 'N':  A is non-unit triangular; 
= 'U': A is unit triangular.  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| NRHS | 
 
(input) INTEGER
 
The number of right hand sides, i.e., the number of columns 
of the matrix B. NRHS >= 0.  | 
| A | 
 
(input) DOUBLE PRECISION array, dimension (LDA,N)
 
The triangular matrix A.  If UPLO = 'U', the leading N-by-N 
upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1.  | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,N). 
 | 
| B | 
 
(input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
 
On entry, the right hand side matrix B. 
On exit, if INFO = 0, the solution matrix X.  | 
| LDB | 
 
(input) INTEGER
 
The leading dimension of the array B.  LDB >= max(1,N). 
 | 
| INFO | 
 
(output) INTEGER
 
= 0:  successful exit 
< 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the i-th diagonal element of A is zero, indicating that the matrix is singular and the solutions X have not been computed.  |