1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
$ LDVR, WORK, LWORK, INFO ) * * -- LAPACK driver routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER JOBVL, JOBVR INTEGER INFO, LDA, LDVL, LDVR, LWORK, N * .. * .. Array Arguments .. REAL A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), $ WI( * ), WORK( * ), WR( * ) * .. * * Purpose * ======= * * SGEEV computes for an N-by-N real nonsymmetric matrix A, the * eigenvalues and, optionally, the left and/or right eigenvectors. * * The right eigenvector v(j) of A satisfies * A * v(j) = lambda(j) * v(j) * where lambda(j) is its eigenvalue. * The left eigenvector u(j) of A satisfies * u(j)**T * A = lambda(j) * u(j)**T * where u(j)**T denotes the transpose of u(j). * * The computed eigenvectors are normalized to have Euclidean norm * equal to 1 and largest component real. * * Arguments * ========= * * JOBVL (input) CHARACTER*1 * = 'N': left eigenvectors of A are not computed; * = 'V': left eigenvectors of A are computed. * * JOBVR (input) CHARACTER*1 * = 'N': right eigenvectors of A are not computed; * = 'V': right eigenvectors of A are computed. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the N-by-N matrix A. * On exit, A has been overwritten. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * WR (output) REAL array, dimension (N) * WI (output) REAL array, dimension (N) * WR and WI contain the real and imaginary parts, * respectively, of the computed eigenvalues. Complex * conjugate pairs of eigenvalues appear consecutively * with the eigenvalue having the positive imaginary part * first. * * VL (output) REAL array, dimension (LDVL,N) * If JOBVL = 'V', the left eigenvectors u(j) are stored one * after another in the columns of VL, in the same order * as their eigenvalues. * If JOBVL = 'N', VL is not referenced. * If the j-th eigenvalue is real, then u(j) = VL(:,j), * the j-th column of VL. * If the j-th and (j+1)-st eigenvalues form a complex * conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and * u(j+1) = VL(:,j) - i*VL(:,j+1). * * LDVL (input) INTEGER * The leading dimension of the array VL. LDVL >= 1; if * JOBVL = 'V', LDVL >= N. * * VR (output) REAL array, dimension (LDVR,N) * If JOBVR = 'V', the right eigenvectors v(j) are stored one * after another in the columns of VR, in the same order * as their eigenvalues. * If JOBVR = 'N', VR is not referenced. * If the j-th eigenvalue is real, then v(j) = VR(:,j), * the j-th column of VR. * If the j-th and (j+1)-st eigenvalues form a complex * conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and * v(j+1) = VR(:,j) - i*VR(:,j+1). * * LDVR (input) INTEGER * The leading dimension of the array VR. LDVR >= 1; if * JOBVR = 'V', LDVR >= N. * * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,3*N), and * if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good * performance, LWORK must generally be larger. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = i, the QR algorithm failed to compute all the * eigenvalues, and no eigenvectors have been computed; * elements i+1:N of WR and WI contain eigenvalues which * have converged. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, SCALEA, WANTVL, WANTVR CHARACTER SIDE INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K, $ MAXWRK, MINWRK, NOUT REAL ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM, $ SN * .. * .. Local Arrays .. LOGICAL SELECT( 1 ) REAL DUM( 1 ) * .. * .. External Subroutines .. EXTERNAL SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLABAD, SLACPY, $ SLARTG, SLASCL, SORGHR, SROT, SSCAL, STREVC, $ XERBLA * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV, ISAMAX REAL SLAMCH, SLANGE, SLAPY2, SNRM2 EXTERNAL LSAME, ILAENV, ISAMAX, SLAMCH, SLANGE, SLAPY2, $ SNRM2 * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) WANTVL = LSAME( JOBVL, 'V' ) WANTVR = LSAME( JOBVR, 'V' ) IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN INFO = -1 ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN INFO = -9 ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN INFO = -11 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * NB refers to the optimal block size for the immediately * following subroutine, as returned by ILAENV. * HSWORK refers to the workspace preferred by SHSEQR, as * calculated below. HSWORK is computed assuming ILO=1 and IHI=N, * the worst case.) * IF( INFO.EQ.0 ) THEN IF( N.EQ.0 ) THEN MINWRK = 1 MAXWRK = 1 ELSE MAXWRK = 2*N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 ) IF( WANTVL ) THEN MINWRK = 4*N MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1, $ 'SORGHR', ' ', N, 1, N, -1 ) ) CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL, $ WORK, -1, INFO ) HSWORK = WORK( 1 ) MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK ) MAXWRK = MAX( MAXWRK, 4*N ) ELSE IF( WANTVR ) THEN MINWRK = 4*N MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1, $ 'SORGHR', ' ', N, 1, N, -1 ) ) CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR, $ WORK, -1, INFO ) HSWORK = WORK( 1 ) MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK ) MAXWRK = MAX( MAXWRK, 4*N ) ELSE MINWRK = 3*N CALL SHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, LDVR, $ WORK, -1, INFO ) HSWORK = WORK( 1 ) MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK ) END IF MAXWRK = MAX( MAXWRK, MINWRK ) END IF WORK( 1 ) = MAXWRK * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -13 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGEEV ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Get machine constants * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = SLANGE( 'M', N, N, A, LDA, DUM ) SCALEA = .FALSE. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN SCALEA = .TRUE. CSCALE = SMLNUM ELSE IF( ANRM.GT.BIGNUM ) THEN SCALEA = .TRUE. CSCALE = BIGNUM END IF IF( SCALEA ) $ CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR ) * * Balance the matrix * (Workspace: need N) * IBAL = 1 CALL SGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR ) * * Reduce to upper Hessenberg form * (Workspace: need 3*N, prefer 2*N+N*NB) * ITAU = IBAL + N IWRK = ITAU + N CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * IF( WANTVL ) THEN * * Want left eigenvectors * Copy Householder vectors to VL * SIDE = 'L' CALL SLACPY( 'L', N, N, A, LDA, VL, LDVL ) * * Generate orthogonal matrix in VL * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) * CALL SORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * * Perform QR iteration, accumulating Schur vectors in VL * (Workspace: need N+1, prefer N+HSWORK (see comments) ) * IWRK = ITAU CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL, $ WORK( IWRK ), LWORK-IWRK+1, INFO ) * IF( WANTVR ) THEN * * Want left and right eigenvectors * Copy Schur vectors to VR * SIDE = 'B' CALL SLACPY( 'F', N, N, VL, LDVL, VR, LDVR ) END IF * ELSE IF( WANTVR ) THEN * * Want right eigenvectors * Copy Householder vectors to VR * SIDE = 'R' CALL SLACPY( 'L', N, N, A, LDA, VR, LDVR ) * * Generate orthogonal matrix in VR * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) * CALL SORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * * Perform QR iteration, accumulating Schur vectors in VR * (Workspace: need N+1, prefer N+HSWORK (see comments) ) * IWRK = ITAU CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR, $ WORK( IWRK ), LWORK-IWRK+1, INFO ) * ELSE * * Compute eigenvalues only * (Workspace: need N+1, prefer N+HSWORK (see comments) ) * IWRK = ITAU CALL SHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR, $ WORK( IWRK ), LWORK-IWRK+1, INFO ) END IF * * If INFO > 0 from SHSEQR, then quit * IF( INFO.GT.0 ) $ GO TO 50 * IF( WANTVL .OR. WANTVR ) THEN * * Compute left and/or right eigenvectors * (Workspace: need 4*N) * CALL STREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR, $ N, NOUT, WORK( IWRK ), IERR ) END IF * IF( WANTVL ) THEN * * Undo balancing of left eigenvectors * (Workspace: need N) * CALL SGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL, $ IERR ) * * Normalize left eigenvectors and make largest component real * DO 20 I = 1, N IF( WI( I ).EQ.ZERO ) THEN SCL = ONE / SNRM2( N, VL( 1, I ), 1 ) CALL SSCAL( N, SCL, VL( 1, I ), 1 ) ELSE IF( WI( I ).GT.ZERO ) THEN SCL = ONE / SLAPY2( SNRM2( N, VL( 1, I ), 1 ), $ SNRM2( N, VL( 1, I+1 ), 1 ) ) CALL SSCAL( N, SCL, VL( 1, I ), 1 ) CALL SSCAL( N, SCL, VL( 1, I+1 ), 1 ) DO 10 K = 1, N WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2 10 CONTINUE K = ISAMAX( N, WORK( IWRK ), 1 ) CALL SLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R ) CALL SROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN ) VL( K, I+1 ) = ZERO END IF 20 CONTINUE END IF * IF( WANTVR ) THEN * * Undo balancing of right eigenvectors * (Workspace: need N) * CALL SGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR, $ IERR ) * * Normalize right eigenvectors and make largest component real * DO 40 I = 1, N IF( WI( I ).EQ.ZERO ) THEN SCL = ONE / SNRM2( N, VR( 1, I ), 1 ) CALL SSCAL( N, SCL, VR( 1, I ), 1 ) ELSE IF( WI( I ).GT.ZERO ) THEN SCL = ONE / SLAPY2( SNRM2( N, VR( 1, I ), 1 ), $ SNRM2( N, VR( 1, I+1 ), 1 ) ) CALL SSCAL( N, SCL, VR( 1, I ), 1 ) CALL SSCAL( N, SCL, VR( 1, I+1 ), 1 ) DO 30 K = 1, N WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2 30 CONTINUE K = ISAMAX( N, WORK( IWRK ), 1 ) CALL SLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R ) CALL SROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN ) VR( K, I+1 ) = ZERO END IF 40 CONTINUE END IF * * Undo scaling if necessary * 50 CONTINUE IF( SCALEA ) THEN CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ), $ MAX( N-INFO, 1 ), IERR ) CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ), $ MAX( N-INFO, 1 ), IERR ) IF( INFO.GT.0 ) THEN CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N, $ IERR ) CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N, $ IERR ) END IF END IF * WORK( 1 ) = MAXWRK RETURN * * End of SGEEV * END |