1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
SUBROUTINE SGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
$ VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, $ RCONDE, RCONDV, WORK, LWORK, IWORK, INFO ) * * -- LAPACK driver routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER BALANC, JOBVL, JOBVR, SENSE INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N REAL ABNRM * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL A( LDA, * ), RCONDE( * ), RCONDV( * ), $ SCALE( * ), VL( LDVL, * ), VR( LDVR, * ), $ WI( * ), WORK( * ), WR( * ) * .. * * Purpose * ======= * * SGEEVX computes for an N-by-N real nonsymmetric matrix A, the * eigenvalues and, optionally, the left and/or right eigenvectors. * * Optionally also, it computes a balancing transformation to improve * the conditioning of the eigenvalues and eigenvectors (ILO, IHI, * SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues * (RCONDE), and reciprocal condition numbers for the right * eigenvectors (RCONDV). * * The right eigenvector v(j) of A satisfies * A * v(j) = lambda(j) * v(j) * where lambda(j) is its eigenvalue. * The left eigenvector u(j) of A satisfies * u(j)**T * A = lambda(j) * u(j)**T * where u(j)**T denotes the transpose of u(j). * * The computed eigenvectors are normalized to have Euclidean norm * equal to 1 and largest component real. * * Balancing a matrix means permuting the rows and columns to make it * more nearly upper triangular, and applying a diagonal similarity * transformation D * A * D**(-1), where D is a diagonal matrix, to * make its rows and columns closer in norm and the condition numbers * of its eigenvalues and eigenvectors smaller. The computed * reciprocal condition numbers correspond to the balanced matrix. * Permuting rows and columns will not change the condition numbers * (in exact arithmetic) but diagonal scaling will. For further * explanation of balancing, see section 4.10.2 of the LAPACK * Users' Guide. * * Arguments * ========= * * BALANC (input) CHARACTER*1 * Indicates how the input matrix should be diagonally scaled * and/or permuted to improve the conditioning of its * eigenvalues. * = 'N': Do not diagonally scale or permute; * = 'P': Perform permutations to make the matrix more nearly * upper triangular. Do not diagonally scale; * = 'S': Diagonally scale the matrix, i.e. replace A by * D*A*D**(-1), where D is a diagonal matrix chosen * to make the rows and columns of A more equal in * norm. Do not permute; * = 'B': Both diagonally scale and permute A. * * Computed reciprocal condition numbers will be for the matrix * after balancing and/or permuting. Permuting does not change * condition numbers (in exact arithmetic), but balancing does. * * JOBVL (input) CHARACTER*1 * = 'N': left eigenvectors of A are not computed; * = 'V': left eigenvectors of A are computed. * If SENSE = 'E' or 'B', JOBVL must = 'V'. * * JOBVR (input) CHARACTER*1 * = 'N': right eigenvectors of A are not computed; * = 'V': right eigenvectors of A are computed. * If SENSE = 'E' or 'B', JOBVR must = 'V'. * * SENSE (input) CHARACTER*1 * Determines which reciprocal condition numbers are computed. * = 'N': None are computed; * = 'E': Computed for eigenvalues only; * = 'V': Computed for right eigenvectors only; * = 'B': Computed for eigenvalues and right eigenvectors. * * If SENSE = 'E' or 'B', both left and right eigenvectors * must also be computed (JOBVL = 'V' and JOBVR = 'V'). * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the N-by-N matrix A. * On exit, A has been overwritten. If JOBVL = 'V' or * JOBVR = 'V', A contains the real Schur form of the balanced * version of the input matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * WR (output) REAL array, dimension (N) * WI (output) REAL array, dimension (N) * WR and WI contain the real and imaginary parts, * respectively, of the computed eigenvalues. Complex * conjugate pairs of eigenvalues will appear consecutively * with the eigenvalue having the positive imaginary part * first. * * VL (output) REAL array, dimension (LDVL,N) * If JOBVL = 'V', the left eigenvectors u(j) are stored one * after another in the columns of VL, in the same order * as their eigenvalues. * If JOBVL = 'N', VL is not referenced. * If the j-th eigenvalue is real, then u(j) = VL(:,j), * the j-th column of VL. * If the j-th and (j+1)-st eigenvalues form a complex * conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and * u(j+1) = VL(:,j) - i*VL(:,j+1). * * LDVL (input) INTEGER * The leading dimension of the array VL. LDVL >= 1; if * JOBVL = 'V', LDVL >= N. * * VR (output) REAL array, dimension (LDVR,N) * If JOBVR = 'V', the right eigenvectors v(j) are stored one * after another in the columns of VR, in the same order * as their eigenvalues. * If JOBVR = 'N', VR is not referenced. * If the j-th eigenvalue is real, then v(j) = VR(:,j), * the j-th column of VR. * If the j-th and (j+1)-st eigenvalues form a complex * conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and * v(j+1) = VR(:,j) - i*VR(:,j+1). * * LDVR (input) INTEGER * The leading dimension of the array VR. LDVR >= 1, and if * JOBVR = 'V', LDVR >= N. * * ILO (output) INTEGER * IHI (output) INTEGER * ILO and IHI are integer values determined when A was * balanced. The balanced A(i,j) = 0 if I > J and * J = 1,...,ILO-1 or I = IHI+1,...,N. * * SCALE (output) REAL array, dimension (N) * Details of the permutations and scaling factors applied * when balancing A. If P(j) is the index of the row and column * interchanged with row and column j, and D(j) is the scaling * factor applied to row and column j, then * SCALE(J) = P(J), for J = 1,...,ILO-1 * = D(J), for J = ILO,...,IHI * = P(J) for J = IHI+1,...,N. * The order in which the interchanges are made is N to IHI+1, * then 1 to ILO-1. * * ABNRM (output) REAL * The one-norm of the balanced matrix (the maximum * of the sum of absolute values of elements of any column). * * RCONDE (output) REAL array, dimension (N) * RCONDE(j) is the reciprocal condition number of the j-th * eigenvalue. * * RCONDV (output) REAL array, dimension (N) * RCONDV(j) is the reciprocal condition number of the j-th * right eigenvector. * * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. If SENSE = 'N' or 'E', * LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V', * LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6). * For good performance, LWORK must generally be larger. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * IWORK (workspace) INTEGER array, dimension (2*N-2) * If SENSE = 'N' or 'E', not referenced. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = i, the QR algorithm failed to compute all the * eigenvalues, and no eigenvectors or condition numbers * have been computed; elements 1:ILO-1 and i+1:N of WR * and WI contain eigenvalues which have converged. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE, $ WNTSNN, WNTSNV CHARACTER JOB, SIDE INTEGER HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK, $ MINWRK, NOUT REAL ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM, $ SN * .. * .. Local Arrays .. LOGICAL SELECT( 1 ) REAL DUM( 1 ) * .. * .. External Subroutines .. EXTERNAL SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLABAD, SLACPY, $ SLARTG, SLASCL, SORGHR, SROT, SSCAL, STREVC, $ STRSNA, XERBLA * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV, ISAMAX REAL SLAMCH, SLANGE, SLAPY2, SNRM2 EXTERNAL LSAME, ILAENV, ISAMAX, SLAMCH, SLANGE, SLAPY2, $ SNRM2 * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) WANTVL = LSAME( JOBVL, 'V' ) WANTVR = LSAME( JOBVR, 'V' ) WNTSNN = LSAME( SENSE, 'N' ) WNTSNE = LSAME( SENSE, 'E' ) WNTSNV = LSAME( SENSE, 'V' ) WNTSNB = LSAME( SENSE, 'B' ) IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'S' ) .OR. $ LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) ) THEN INFO = -1 ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN INFO = -2 ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN INFO = -3 ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR. $ ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND. $ WANTVR ) ) ) THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN INFO = -11 ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN INFO = -13 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * NB refers to the optimal block size for the immediately * following subroutine, as returned by ILAENV. * HSWORK refers to the workspace preferred by SHSEQR, as * calculated below. HSWORK is computed assuming ILO=1 and IHI=N, * the worst case.) * IF( INFO.EQ.0 ) THEN IF( N.EQ.0 ) THEN MINWRK = 1 MAXWRK = 1 ELSE MAXWRK = N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 ) * IF( WANTVL ) THEN CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL, $ WORK, -1, INFO ) ELSE IF( WANTVR ) THEN CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR, $ WORK, -1, INFO ) ELSE IF( WNTSNN ) THEN CALL SHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, $ LDVR, WORK, -1, INFO ) ELSE CALL SHSEQR( 'S', 'N', N, 1, N, A, LDA, WR, WI, VR, $ LDVR, WORK, -1, INFO ) END IF END IF HSWORK = WORK( 1 ) * IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN MINWRK = 2*N IF( .NOT.WNTSNN ) $ MINWRK = MAX( MINWRK, N*N+6*N ) MAXWRK = MAX( MAXWRK, HSWORK ) IF( .NOT.WNTSNN ) $ MAXWRK = MAX( MAXWRK, N*N + 6*N ) ELSE MINWRK = 3*N IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) ) $ MINWRK = MAX( MINWRK, N*N + 6*N ) MAXWRK = MAX( MAXWRK, HSWORK ) MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'SORGHR', $ ' ', N, 1, N, -1 ) ) IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) ) $ MAXWRK = MAX( MAXWRK, N*N + 6*N ) MAXWRK = MAX( MAXWRK, 3*N ) END IF MAXWRK = MAX( MAXWRK, MINWRK ) END IF WORK( 1 ) = MAXWRK * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -21 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGEEVX', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Get machine constants * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ICOND = 0 ANRM = SLANGE( 'M', N, N, A, LDA, DUM ) SCALEA = .FALSE. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN SCALEA = .TRUE. CSCALE = SMLNUM ELSE IF( ANRM.GT.BIGNUM ) THEN SCALEA = .TRUE. CSCALE = BIGNUM END IF IF( SCALEA ) $ CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR ) * * Balance the matrix and compute ABNRM * CALL SGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR ) ABNRM = SLANGE( '1', N, N, A, LDA, DUM ) IF( SCALEA ) THEN DUM( 1 ) = ABNRM CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR ) ABNRM = DUM( 1 ) END IF * * Reduce to upper Hessenberg form * (Workspace: need 2*N, prefer N+N*NB) * ITAU = 1 IWRK = ITAU + N CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * IF( WANTVL ) THEN * * Want left eigenvectors * Copy Householder vectors to VL * SIDE = 'L' CALL SLACPY( 'L', N, N, A, LDA, VL, LDVL ) * * Generate orthogonal matrix in VL * (Workspace: need 2*N-1, prefer N+(N-1)*NB) * CALL SORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * * Perform QR iteration, accumulating Schur vectors in VL * (Workspace: need 1, prefer HSWORK (see comments) ) * IWRK = ITAU CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL, $ WORK( IWRK ), LWORK-IWRK+1, INFO ) * IF( WANTVR ) THEN * * Want left and right eigenvectors * Copy Schur vectors to VR * SIDE = 'B' CALL SLACPY( 'F', N, N, VL, LDVL, VR, LDVR ) END IF * ELSE IF( WANTVR ) THEN * * Want right eigenvectors * Copy Householder vectors to VR * SIDE = 'R' CALL SLACPY( 'L', N, N, A, LDA, VR, LDVR ) * * Generate orthogonal matrix in VR * (Workspace: need 2*N-1, prefer N+(N-1)*NB) * CALL SORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * * Perform QR iteration, accumulating Schur vectors in VR * (Workspace: need 1, prefer HSWORK (see comments) ) * IWRK = ITAU CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR, $ WORK( IWRK ), LWORK-IWRK+1, INFO ) * ELSE * * Compute eigenvalues only * If condition numbers desired, compute Schur form * IF( WNTSNN ) THEN JOB = 'E' ELSE JOB = 'S' END IF * * (Workspace: need 1, prefer HSWORK (see comments) ) * IWRK = ITAU CALL SHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR, $ WORK( IWRK ), LWORK-IWRK+1, INFO ) END IF * * If INFO > 0 from SHSEQR, then quit * IF( INFO.GT.0 ) $ GO TO 50 * IF( WANTVL .OR. WANTVR ) THEN * * Compute left and/or right eigenvectors * (Workspace: need 3*N) * CALL STREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR, $ N, NOUT, WORK( IWRK ), IERR ) END IF * * Compute condition numbers if desired * (Workspace: need N*N+6*N unless SENSE = 'E') * IF( .NOT.WNTSNN ) THEN CALL STRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR, $ RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK, $ ICOND ) END IF * IF( WANTVL ) THEN * * Undo balancing of left eigenvectors * CALL SGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL, $ IERR ) * * Normalize left eigenvectors and make largest component real * DO 20 I = 1, N IF( WI( I ).EQ.ZERO ) THEN SCL = ONE / SNRM2( N, VL( 1, I ), 1 ) CALL SSCAL( N, SCL, VL( 1, I ), 1 ) ELSE IF( WI( I ).GT.ZERO ) THEN SCL = ONE / SLAPY2( SNRM2( N, VL( 1, I ), 1 ), $ SNRM2( N, VL( 1, I+1 ), 1 ) ) CALL SSCAL( N, SCL, VL( 1, I ), 1 ) CALL SSCAL( N, SCL, VL( 1, I+1 ), 1 ) DO 10 K = 1, N WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2 10 CONTINUE K = ISAMAX( N, WORK, 1 ) CALL SLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R ) CALL SROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN ) VL( K, I+1 ) = ZERO END IF 20 CONTINUE END IF * IF( WANTVR ) THEN * * Undo balancing of right eigenvectors * CALL SGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR, $ IERR ) * * Normalize right eigenvectors and make largest component real * DO 40 I = 1, N IF( WI( I ).EQ.ZERO ) THEN SCL = ONE / SNRM2( N, VR( 1, I ), 1 ) CALL SSCAL( N, SCL, VR( 1, I ), 1 ) ELSE IF( WI( I ).GT.ZERO ) THEN SCL = ONE / SLAPY2( SNRM2( N, VR( 1, I ), 1 ), $ SNRM2( N, VR( 1, I+1 ), 1 ) ) CALL SSCAL( N, SCL, VR( 1, I ), 1 ) CALL SSCAL( N, SCL, VR( 1, I+1 ), 1 ) DO 30 K = 1, N WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2 30 CONTINUE K = ISAMAX( N, WORK, 1 ) CALL SLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R ) CALL SROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN ) VR( K, I+1 ) = ZERO END IF 40 CONTINUE END IF * * Undo scaling if necessary * 50 CONTINUE IF( SCALEA ) THEN CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ), $ MAX( N-INFO, 1 ), IERR ) CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ), $ MAX( N-INFO, 1 ), IERR ) IF( INFO.EQ.0 ) THEN IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 ) $ CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N, $ IERR ) ELSE CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N, $ IERR ) CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N, $ IERR ) END IF END IF * WORK( 1 ) = MAXWRK RETURN * * End of SGEEVX * END |