1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
SUBROUTINE SGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INFO, LDA, LWORK, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * SGEQLF computes a QL factorization of a real M-by-N matrix A: * A = Q * L. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, * if m >= n, the lower triangle of the subarray * A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; * if m <= n, the elements on and below the (n-m)-th * superdiagonal contain the M-by-N lower trapezoidal matrix L; * the remaining elements, with the array TAU, represent the * orthogonal matrix Q as a product of elementary reflectors * (see Further Details). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * TAU (output) REAL array, dimension (min(M,N)) * The scalar factors of the elementary reflectors (see Further * Details). * * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,N). * For optimum performance LWORK >= N*NB, where NB is the * optimal blocksize. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * The matrix Q is represented as a product of elementary reflectors * * Q = H(k) . . . H(2) H(1), where k = min(m,n). * * Each H(i) has the form * * H(i) = I - tau * v * v**T * * where tau is a real scalar, and v is a real vector with * v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in * A(1:m-k+i-1,n-k+i), and tau in TAU(i). * * ===================================================================== * * .. Local Scalars .. LOGICAL LQUERY INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT, $ MU, NB, NBMIN, NU, NX * .. * .. External Subroutines .. EXTERNAL SGEQL2, SLARFB, SLARFT, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 END IF * IF( INFO.EQ.0 ) THEN K = MIN( M, N ) IF( K.EQ.0 ) THEN LWKOPT = 1 ELSE NB = ILAENV( 1, 'SGEQLF', ' ', M, N, -1, -1 ) LWKOPT = N*NB END IF WORK( 1 ) = LWKOPT * IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN INFO = -7 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGEQLF', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( K.EQ.0 ) THEN RETURN END IF * NBMIN = 2 NX = 1 IWS = N IF( NB.GT.1 .AND. NB.LT.K ) THEN * * Determine when to cross over from blocked to unblocked code. * NX = MAX( 0, ILAENV( 3, 'SGEQLF', ' ', M, N, -1, -1 ) ) IF( NX.LT.K ) THEN * * Determine if workspace is large enough for blocked code. * LDWORK = N IWS = LDWORK*NB IF( LWORK.LT.IWS ) THEN * * Not enough workspace to use optimal NB: reduce NB and * determine the minimum value of NB. * NB = LWORK / LDWORK NBMIN = MAX( 2, ILAENV( 2, 'SGEQLF', ' ', M, N, -1, $ -1 ) ) END IF END IF END IF * IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN * * Use blocked code initially. * The last kk columns are handled by the block method. * KI = ( ( K-NX-1 ) / NB )*NB KK = MIN( K, KI+NB ) * DO 10 I = K - KK + KI + 1, K - KK + 1, -NB IB = MIN( K-I+1, NB ) * * Compute the QL factorization of the current block * A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1) * CALL SGEQL2( M-K+I+IB-1, IB, A( 1, N-K+I ), LDA, TAU( I ), $ WORK, IINFO ) IF( N-K+I.GT.1 ) THEN * * Form the triangular factor of the block reflector * H = H(i+ib-1) . . . H(i+1) H(i) * CALL SLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB, $ A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK ) * * Apply H**T to A(1:m-k+i+ib-1,1:n-k+i-1) from the left * CALL SLARFB( 'Left', 'Transpose', 'Backward', $ 'Columnwise', M-K+I+IB-1, N-K+I-1, IB, $ A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA, $ WORK( IB+1 ), LDWORK ) END IF 10 CONTINUE MU = M - K + I + NB - 1 NU = N - K + I + NB - 1 ELSE MU = M NU = N END IF * * Use unblocked code to factor the last or only block * IF( MU.GT.0 .AND. NU.GT.0 ) $ CALL SGEQL2( MU, NU, A, LDA, TAU, WORK, IINFO ) * WORK( 1 ) = IWS RETURN * * End of SGEQLF * END |