1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
SUBROUTINE SGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
* * -- LAPACK auxiliary routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. INTEGER LDA, N REAL SCALE * .. * .. Array Arguments .. INTEGER IPIV( * ), JPIV( * ) REAL A( LDA, * ), RHS( * ) * .. * * Purpose * ======= * * SGESC2 solves a system of linear equations * * A * X = scale* RHS * * with a general N-by-N matrix A using the LU factorization with * complete pivoting computed by SGETC2. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. * * A (input) REAL array, dimension (LDA,N) * On entry, the LU part of the factorization of the n-by-n * matrix A computed by SGETC2: A = P * L * U * Q * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1, N). * * RHS (input/output) REAL array, dimension (N). * On entry, the right hand side vector b. * On exit, the solution vector X. * * IPIV (input) INTEGER array, dimension (N). * The pivot indices; for 1 <= i <= N, row i of the * matrix has been interchanged with row IPIV(i). * * JPIV (input) INTEGER array, dimension (N). * The pivot indices; for 1 <= j <= N, column j of the * matrix has been interchanged with column JPIV(j). * * SCALE (output) REAL * On exit, SCALE contains the scale factor. SCALE is chosen * 0 <= SCALE <= 1 to prevent owerflow in the solution. * * Further Details * =============== * * Based on contributions by * Bo Kagstrom and Peter Poromaa, Department of Computing Science, * Umea University, S-901 87 Umea, Sweden. * * ===================================================================== * * .. Parameters .. REAL ONE, TWO PARAMETER ( ONE = 1.0E+0, TWO = 2.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J REAL BIGNUM, EPS, SMLNUM, TEMP * .. * .. External Subroutines .. EXTERNAL SLABAD, SLASWP, SSCAL * .. * .. External Functions .. INTEGER ISAMAX REAL SLAMCH EXTERNAL ISAMAX, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. * .. Executable Statements .. * * Set constant to control owerflow * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) / EPS BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) * * Apply permutations IPIV to RHS * CALL SLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 ) * * Solve for L part * DO 20 I = 1, N - 1 DO 10 J = I + 1, N RHS( J ) = RHS( J ) - A( J, I )*RHS( I ) 10 CONTINUE 20 CONTINUE * * Solve for U part * SCALE = ONE * * Check for scaling * I = ISAMAX( N, RHS, 1 ) IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN TEMP = ( ONE / TWO ) / ABS( RHS( I ) ) CALL SSCAL( N, TEMP, RHS( 1 ), 1 ) SCALE = SCALE*TEMP END IF * DO 40 I = N, 1, -1 TEMP = ONE / A( I, I ) RHS( I ) = RHS( I )*TEMP DO 30 J = I + 1, N RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP ) 30 CONTINUE 40 CONTINUE * * Apply permutations JPIV to the solution (RHS) * CALL SLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 ) RETURN * * End of SGESC2 * END |