1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 |
SUBROUTINE SGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
$ LDV, WORK, LWORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * * -- Contributed by Zlatko Drmac of the University of Zagreb and -- * -- Kresimir Veselic of the Fernuniversitaet Hagen -- * -- April 2011 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * This routine is also part of SIGMA (version 1.23, October 23. 2008.) * SIGMA is a library of algorithms for highly accurate algorithms for * computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the * eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0. * IMPLICIT NONE * .. * .. Scalar Arguments .. INTEGER INFO, LDA, LDV, LWORK, M, MV, N CHARACTER*1 JOBA, JOBU, JOBV * .. * .. Array Arguments .. REAL A( LDA, * ), SVA( N ), V( LDV, * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * SGESVJ computes the singular value decomposition (SVD) of a real * M-by-N matrix A, where M >= N. The SVD of A is written as * [++] [xx] [x0] [xx] * A = U * SIGMA * V^t, [++] = [xx] * [ox] * [xx] * [++] [xx] * where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal * matrix, and V is an N-by-N orthogonal matrix. The diagonal elements * of SIGMA are the singular values of A. The columns of U and V are the * left and the right singular vectors of A, respectively. * * Further Details * ~~~~~~~~~~~~~~~ * The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane * rotations. The rotations are implemented as fast scaled rotations of * Anda and Park [1]. In the case of underflow of the Jacobi angle, a * modified Jacobi transformation of Drmac [4] is used. Pivot strategy uses * column interchanges of de Rijk [2]. The relative accuracy of the computed * singular values and the accuracy of the computed singular vectors (in * angle metric) is as guaranteed by the theory of Demmel and Veselic [3]. * The condition number that determines the accuracy in the full rank case * is essentially min_{D=diag} kappa(A*D), where kappa(.) is the * spectral condition number. The best performance of this Jacobi SVD * procedure is achieved if used in an accelerated version of Drmac and * Veselic [5,6], and it is the kernel routine in the SIGMA library [7]. * Some tunning parameters (marked with [TP]) are available for the * implementer. * The computational range for the nonzero singular values is the machine * number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even * denormalized singular values can be computed with the corresponding * gradual loss of accurate digits. * * Contributors * ~~~~~~~~~~~~ * Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) * * References * ~~~~~~~~~~ * [1] A. A. Anda and H. Park: Fast plane rotations with dynamic scaling. * SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174. * [2] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the * singular value decomposition on a vector computer. * SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371. * [3] J. Demmel and K. Veselic: Jacobi method is more accurate than QR. * [4] Z. Drmac: Implementation of Jacobi rotations for accurate singular * value computation in floating point arithmetic. * SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222. * [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. * SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. * LAPACK Working note 169. * [6] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. * SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. * LAPACK Working note 170. * [7] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, * QSVD, (H,K)-SVD computations. * Department of Mathematics, University of Zagreb, 2008. * * Bugs, Examples and Comments * ~~~~~~~~~~~~~~~~~~~~~~~~~~~ * Please report all bugs and send interesting test examples and comments to * drmac@math.hr. Thank you. * * Arguments * ========= * * JOBA (input) CHARACTER* 1 * Specifies the structure of A. * = 'L': The input matrix A is lower triangular; * = 'U': The input matrix A is upper triangular; * = 'G': The input matrix A is general M-by-N matrix, M >= N. * * JOBU (input) CHARACTER*1 * Specifies whether to compute the left singular vectors * (columns of U): * = 'U': The left singular vectors corresponding to the nonzero * singular values are computed and returned in the leading * columns of A. See more details in the description of A. * The default numerical orthogonality threshold is set to * approximately TOL=CTOL*EPS, CTOL=SQRT(M), EPS=SLAMCH('E'). * = 'C': Analogous to JOBU='U', except that user can control the * level of numerical orthogonality of the computed left * singular vectors. TOL can be set to TOL = CTOL*EPS, where * CTOL is given on input in the array WORK. * No CTOL smaller than ONE is allowed. CTOL greater * than 1 / EPS is meaningless. The option 'C' * can be used if M*EPS is satisfactory orthogonality * of the computed left singular vectors, so CTOL=M could * save few sweeps of Jacobi rotations. * See the descriptions of A and WORK(1). * = 'N': The matrix U is not computed. However, see the * description of A. * * JOBV (input) CHARACTER*1 * Specifies whether to compute the right singular vectors, that * is, the matrix V: * = 'V' : the matrix V is computed and returned in the array V * = 'A' : the Jacobi rotations are applied to the MV-by-N * array V. In other words, the right singular vector * matrix V is not computed explicitly; instead it is * applied to an MV-by-N matrix initially stored in the * first MV rows of V. * = 'N' : the matrix V is not computed and the array V is not * referenced * * M (input) INTEGER * The number of rows of the input matrix A. 1/SLAMCH('E') > M >= 0. * * N (input) INTEGER * The number of columns of the input matrix A. * M >= N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, * If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C': * If INFO .EQ. 0 : * RANKA orthonormal columns of U are returned in the * leading RANKA columns of the array A. Here RANKA <= N * is the number of computed singular values of A that are * above the underflow threshold SLAMCH('S'). The singular * vectors corresponding to underflowed or zero singular * values are not computed. The value of RANKA is returned * in the array WORK as RANKA=NINT(WORK(2)). Also see the * descriptions of SVA and WORK. The computed columns of U * are mutually numerically orthogonal up to approximately * TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'), * see the description of JOBU. * If INFO .GT. 0, * the procedure SGESVJ did not converge in the given number * of iterations (sweeps). In that case, the computed * columns of U may not be orthogonal up to TOL. The output * U (stored in A), SIGMA (given by the computed singular * values in SVA(1:N)) and V is still a decomposition of the * input matrix A in the sense that the residual * ||A-SCALE*U*SIGMA*V^T||_2 / ||A||_2 is small. * If JOBU .EQ. 'N': * If INFO .EQ. 0 : * Note that the left singular vectors are 'for free' in the * one-sided Jacobi SVD algorithm. However, if only the * singular values are needed, the level of numerical * orthogonality of U is not an issue and iterations are * stopped when the columns of the iterated matrix are * numerically orthogonal up to approximately M*EPS. Thus, * on exit, A contains the columns of U scaled with the * corresponding singular values. * If INFO .GT. 0 : * the procedure SGESVJ did not converge in the given number * of iterations (sweeps). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * SVA (workspace/output) REAL array, dimension (N) * On exit, * If INFO .EQ. 0 : * depending on the value SCALE = WORK(1), we have: * If SCALE .EQ. ONE: * SVA(1:N) contains the computed singular values of A. * During the computation SVA contains the Euclidean column * norms of the iterated matrices in the array A. * If SCALE .NE. ONE: * The singular values of A are SCALE*SVA(1:N), and this * factored representation is due to the fact that some of the * singular values of A might underflow or overflow. * * If INFO .GT. 0 : * the procedure SGESVJ did not converge in the given number of * iterations (sweeps) and SCALE*SVA(1:N) may not be accurate. * * MV (input) INTEGER * If JOBV .EQ. 'A', then the product of Jacobi rotations in SGESVJ * is applied to the first MV rows of V. See the description of JOBV. * * V (input/output) REAL array, dimension (LDV,N) * If JOBV = 'V', then V contains on exit the N-by-N matrix of * the right singular vectors; * If JOBV = 'A', then V contains the product of the computed right * singular vector matrix and the initial matrix in * the array V. * If JOBV = 'N', then V is not referenced. * * LDV (input) INTEGER * The leading dimension of the array V, LDV .GE. 1. * If JOBV .EQ. 'V', then LDV .GE. max(1,N). * If JOBV .EQ. 'A', then LDV .GE. max(1,MV) . * * WORK (input/workspace/output) REAL array, dimension max(4,M+N). * On entry, * If JOBU .EQ. 'C' : * WORK(1) = CTOL, where CTOL defines the threshold for convergence. * The process stops if all columns of A are mutually * orthogonal up to CTOL*EPS, EPS=SLAMCH('E'). * It is required that CTOL >= ONE, i.e. it is not * allowed to force the routine to obtain orthogonality * below EPSILON. * On exit, * WORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N) * are the computed singular vcalues of A. * (See description of SVA().) * WORK(2) = NINT(WORK(2)) is the number of the computed nonzero * singular values. * WORK(3) = NINT(WORK(3)) is the number of the computed singular * values that are larger than the underflow threshold. * WORK(4) = NINT(WORK(4)) is the number of sweeps of Jacobi * rotations needed for numerical convergence. * WORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep. * This is useful information in cases when SGESVJ did * not converge, as it can be used to estimate whether * the output is stil useful and for post festum analysis. * WORK(6) = the largest absolute value over all sines of the * Jacobi rotation angles in the last sweep. It can be * useful for a post festum analysis. * * LWORK (input) INTEGER * length of WORK, WORK >= MAX(6,M+N) * * INFO (output) INTEGER * = 0 : successful exit. * < 0 : if INFO = -i, then the i-th argument had an illegal value * > 0 : SGESVJ did not converge in the maximal allowed number (30) * of sweeps. The output may still be useful. See the * description of WORK. * * ===================================================================== * * .. Local Parameters .. REAL ZERO, HALF, ONE, TWO PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0, $ TWO = 2.0E0 ) INTEGER NSWEEP PARAMETER ( NSWEEP = 30 ) * .. * .. Local Scalars .. REAL AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG, $ BIGTHETA, CS, CTOL, EPSLN, LARGE, MXAAPQ, $ MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL, $ SKL, SFMIN, SMALL, SN, T, TEMP1, THETA, $ THSIGN, TOL INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1, $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34, $ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, $ SWBAND LOGICAL APPLV, GOSCALE, LOWER, LSVEC, NOSCALE, ROTOK, $ RSVEC, UCTOL, UPPER * .. * .. Local Arrays .. REAL FASTR( 5 ) * .. * .. Intrinsic Functions .. INTRINSIC ABS, AMAX1, AMIN1, FLOAT, MIN0, SIGN, SQRT * .. * .. External Functions .. * .. * from BLAS REAL SDOT, SNRM2 EXTERNAL SDOT, SNRM2 INTEGER ISAMAX EXTERNAL ISAMAX * from LAPACK REAL SLAMCH EXTERNAL SLAMCH LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. * .. * from BLAS EXTERNAL SAXPY, SCOPY, SROTM, SSCAL, SSWAP * from LAPACK EXTERNAL SLASCL, SLASET, SLASSQ, XERBLA * EXTERNAL SGSVJ0, SGSVJ1 * .. * .. Executable Statements .. * * Test the input arguments * LSVEC = LSAME( JOBU, 'U' ) UCTOL = LSAME( JOBU, 'C' ) RSVEC = LSAME( JOBV, 'V' ) APPLV = LSAME( JOBV, 'A' ) UPPER = LSAME( JOBA, 'U' ) LOWER = LSAME( JOBA, 'L' ) * IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN INFO = -2 ELSE IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN INFO = -5 ELSE IF( LDA.LT.M ) THEN INFO = -7 ELSE IF( MV.LT.0 ) THEN INFO = -9 ELSE IF( ( RSVEC .AND. ( LDV.LT.N ) ) .OR. $ ( APPLV .AND. ( LDV.LT.MV ) ) ) THEN INFO = -11 ELSE IF( UCTOL .AND. ( WORK( 1 ).LE.ONE ) ) THEN INFO = -12 ELSE IF( LWORK.LT.MAX0( M+N, 6 ) ) THEN INFO = -13 ELSE INFO = 0 END IF * * #:( IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGESVJ', -INFO ) RETURN END IF * * #:) Quick return for void matrix * IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN * * Set numerical parameters * The stopping criterion for Jacobi rotations is * * max_{i<>j}|A(:,i)^T * A(:,j)|/(||A(:,i)||*||A(:,j)||) < CTOL*EPS * * where EPS is the round-off and CTOL is defined as follows: * IF( UCTOL ) THEN * ... user controlled CTOL = WORK( 1 ) ELSE * ... default IF( LSVEC .OR. RSVEC .OR. APPLV ) THEN CTOL = SQRT( FLOAT( M ) ) ELSE CTOL = FLOAT( M ) END IF END IF * ... and the machine dependent parameters are *[!] (Make sure that SLAMCH() works properly on the target machine.) * EPSLN = SLAMCH( 'Epsilon' ) ROOTEPS = SQRT( EPSLN ) SFMIN = SLAMCH( 'SafeMinimum' ) ROOTSFMIN = SQRT( SFMIN ) SMALL = SFMIN / EPSLN BIG = SLAMCH( 'Overflow' ) * BIG = ONE / SFMIN ROOTBIG = ONE / ROOTSFMIN LARGE = BIG / SQRT( FLOAT( M*N ) ) BIGTHETA = ONE / ROOTEPS * TOL = CTOL*EPSLN ROOTTOL = SQRT( TOL ) * IF( FLOAT( M )*EPSLN.GE.ONE ) THEN INFO = -4 CALL XERBLA( 'SGESVJ', -INFO ) RETURN END IF * * Initialize the right singular vector matrix. * IF( RSVEC ) THEN MVL = N CALL SLASET( 'A', MVL, N, ZERO, ONE, V, LDV ) ELSE IF( APPLV ) THEN MVL = MV END IF RSVEC = RSVEC .OR. APPLV * * Initialize SVA( 1:N ) = ( ||A e_i||_2, i = 1:N ) *(!) If necessary, scale A to protect the largest singular value * from overflow. It is possible that saving the largest singular * value destroys the information about the small ones. * This initial scaling is almost minimal in the sense that the * goal is to make sure that no column norm overflows, and that * SQRT(N)*max_i SVA(i) does not overflow. If INFinite entries * in A are detected, the procedure returns with INFO=-6. * SKL = ONE / SQRT( FLOAT( M )*FLOAT( N ) ) NOSCALE = .TRUE. GOSCALE = .TRUE. * IF( LOWER ) THEN * the input matrix is M-by-N lower triangular (trapezoidal) DO 1874 p = 1, N AAPP = ZERO AAQQ = ONE CALL SLASSQ( M-p+1, A( p, p ), 1, AAPP, AAQQ ) IF( AAPP.GT.BIG ) THEN INFO = -6 CALL XERBLA( 'SGESVJ', -INFO ) RETURN END IF AAQQ = SQRT( AAQQ ) IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN SVA( p ) = AAPP*AAQQ ELSE NOSCALE = .FALSE. SVA( p ) = AAPP*( AAQQ*SKL ) IF( GOSCALE ) THEN GOSCALE = .FALSE. DO 1873 q = 1, p - 1 SVA( q ) = SVA( q )*SKL 1873 CONTINUE END IF END IF 1874 CONTINUE ELSE IF( UPPER ) THEN * the input matrix is M-by-N upper triangular (trapezoidal) DO 2874 p = 1, N AAPP = ZERO AAQQ = ONE CALL SLASSQ( p, A( 1, p ), 1, AAPP, AAQQ ) IF( AAPP.GT.BIG ) THEN INFO = -6 CALL XERBLA( 'SGESVJ', -INFO ) RETURN END IF AAQQ = SQRT( AAQQ ) IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN SVA( p ) = AAPP*AAQQ ELSE NOSCALE = .FALSE. SVA( p ) = AAPP*( AAQQ*SKL ) IF( GOSCALE ) THEN GOSCALE = .FALSE. DO 2873 q = 1, p - 1 SVA( q ) = SVA( q )*SKL 2873 CONTINUE END IF END IF 2874 CONTINUE ELSE * the input matrix is M-by-N general dense DO 3874 p = 1, N AAPP = ZERO AAQQ = ONE CALL SLASSQ( M, A( 1, p ), 1, AAPP, AAQQ ) IF( AAPP.GT.BIG ) THEN INFO = -6 CALL XERBLA( 'SGESVJ', -INFO ) RETURN END IF AAQQ = SQRT( AAQQ ) IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN SVA( p ) = AAPP*AAQQ ELSE NOSCALE = .FALSE. SVA( p ) = AAPP*( AAQQ*SKL ) IF( GOSCALE ) THEN GOSCALE = .FALSE. DO 3873 q = 1, p - 1 SVA( q ) = SVA( q )*SKL 3873 CONTINUE END IF END IF 3874 CONTINUE END IF * IF( NOSCALE )SKL = ONE * * Move the smaller part of the spectrum from the underflow threshold *(!) Start by determining the position of the nonzero entries of the * array SVA() relative to ( SFMIN, BIG ). * AAPP = ZERO AAQQ = BIG DO 4781 p = 1, N IF( SVA( p ).NE.ZERO )AAQQ = AMIN1( AAQQ, SVA( p ) ) AAPP = AMAX1( AAPP, SVA( p ) ) 4781 CONTINUE * * #:) Quick return for zero matrix * IF( AAPP.EQ.ZERO ) THEN IF( LSVEC )CALL SLASET( 'G', M, N, ZERO, ONE, A, LDA ) WORK( 1 ) = ONE WORK( 2 ) = ZERO WORK( 3 ) = ZERO WORK( 4 ) = ZERO WORK( 5 ) = ZERO WORK( 6 ) = ZERO RETURN END IF * * #:) Quick return for one-column matrix * IF( N.EQ.1 ) THEN IF( LSVEC )CALL SLASCL( 'G', 0, 0, SVA( 1 ), SKL, M, 1, $ A( 1, 1 ), LDA, IERR ) WORK( 1 ) = ONE / SKL IF( SVA( 1 ).GE.SFMIN ) THEN WORK( 2 ) = ONE ELSE WORK( 2 ) = ZERO END IF WORK( 3 ) = ZERO WORK( 4 ) = ZERO WORK( 5 ) = ZERO WORK( 6 ) = ZERO RETURN END IF * * Protect small singular values from underflow, and try to * avoid underflows/overflows in computing Jacobi rotations. * SN = SQRT( SFMIN / EPSLN ) TEMP1 = SQRT( BIG / FLOAT( N ) ) IF( ( AAPP.LE.SN ) .OR. ( AAQQ.GE.TEMP1 ) .OR. $ ( ( SN.LE.AAQQ ) .AND. ( AAPP.LE.TEMP1 ) ) ) THEN TEMP1 = AMIN1( BIG, TEMP1 / AAPP ) * AAQQ = AAQQ*TEMP1 * AAPP = AAPP*TEMP1 ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.LE.TEMP1 ) ) THEN TEMP1 = AMIN1( SN / AAQQ, BIG / ( AAPP*SQRT( FLOAT( N ) ) ) ) * AAQQ = AAQQ*TEMP1 * AAPP = AAPP*TEMP1 ELSE IF( ( AAQQ.GE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN TEMP1 = AMAX1( SN / AAQQ, TEMP1 / AAPP ) * AAQQ = AAQQ*TEMP1 * AAPP = AAPP*TEMP1 ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN TEMP1 = AMIN1( SN / AAQQ, BIG / ( SQRT( FLOAT( N ) )*AAPP ) ) * AAQQ = AAQQ*TEMP1 * AAPP = AAPP*TEMP1 ELSE TEMP1 = ONE END IF * * Scale, if necessary * IF( TEMP1.NE.ONE ) THEN CALL SLASCL( 'G', 0, 0, ONE, TEMP1, N, 1, SVA, N, IERR ) END IF SKL = TEMP1*SKL IF( SKL.NE.ONE ) THEN CALL SLASCL( JOBA, 0, 0, ONE, SKL, M, N, A, LDA, IERR ) SKL = ONE / SKL END IF * * Row-cyclic Jacobi SVD algorithm with column pivoting * EMPTSW = ( N*( N-1 ) ) / 2 NOTROT = 0 FASTR( 1 ) = ZERO * * A is represented in factored form A = A * diag(WORK), where diag(WORK) * is initialized to identity. WORK is updated during fast scaled * rotations. * DO 1868 q = 1, N WORK( q ) = ONE 1868 CONTINUE * * SWBAND = 3 *[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective * if SGESVJ is used as a computational routine in the preconditioned * Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure * works on pivots inside a band-like region around the diagonal. * The boundaries are determined dynamically, based on the number of * pivots above a threshold. * KBL = MIN0( 8, N ) *[TP] KBL is a tuning parameter that defines the tile size in the * tiling of the p-q loops of pivot pairs. In general, an optimal * value of KBL depends on the matrix dimensions and on the * parameters of the computer's memory. * NBL = N / KBL IF( ( NBL*KBL ).NE.N )NBL = NBL + 1 * BLSKIP = KBL**2 *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. * ROWSKIP = MIN0( 5, KBL ) *[TP] ROWSKIP is a tuning parameter. * LKAHEAD = 1 *[TP] LKAHEAD is a tuning parameter. * * Quasi block transformations, using the lower (upper) triangular * structure of the input matrix. The quasi-block-cycling usually * invokes cubic convergence. Big part of this cycle is done inside * canonical subspaces of dimensions less than M. * IF( ( LOWER .OR. UPPER ) .AND. ( N.GT.MAX0( 64, 4*KBL ) ) ) THEN *[TP] The number of partition levels and the actual partition are * tuning parameters. N4 = N / 4 N2 = N / 2 N34 = 3*N4 IF( APPLV ) THEN q = 0 ELSE q = 1 END IF * IF( LOWER ) THEN * * This works very well on lower triangular matrices, in particular * in the framework of the preconditioned Jacobi SVD (xGEJSV). * The idea is simple: * [+ 0 0 0] Note that Jacobi transformations of [0 0] * [+ + 0 0] [0 0] * [+ + x 0] actually work on [x 0] [x 0] * [+ + x x] [x x]. [x x] * CALL SGSVJ0( JOBV, M-N34, N-N34, A( N34+1, N34+1 ), LDA, $ WORK( N34+1 ), SVA( N34+1 ), MVL, $ V( N34*q+1, N34+1 ), LDV, EPSLN, SFMIN, TOL, $ 2, WORK( N+1 ), LWORK-N, IERR ) * CALL SGSVJ0( JOBV, M-N2, N34-N2, A( N2+1, N2+1 ), LDA, $ WORK( N2+1 ), SVA( N2+1 ), MVL, $ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 2, $ WORK( N+1 ), LWORK-N, IERR ) * CALL SGSVJ1( JOBV, M-N2, N-N2, N4, A( N2+1, N2+1 ), LDA, $ WORK( N2+1 ), SVA( N2+1 ), MVL, $ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1, $ WORK( N+1 ), LWORK-N, IERR ) * CALL SGSVJ0( JOBV, M-N4, N2-N4, A( N4+1, N4+1 ), LDA, $ WORK( N4+1 ), SVA( N4+1 ), MVL, $ V( N4*q+1, N4+1 ), LDV, EPSLN, SFMIN, TOL, 1, $ WORK( N+1 ), LWORK-N, IERR ) * CALL SGSVJ0( JOBV, M, N4, A, LDA, WORK, SVA, MVL, V, LDV, $ EPSLN, SFMIN, TOL, 1, WORK( N+1 ), LWORK-N, $ IERR ) * CALL SGSVJ1( JOBV, M, N2, N4, A, LDA, WORK, SVA, MVL, V, $ LDV, EPSLN, SFMIN, TOL, 1, WORK( N+1 ), $ LWORK-N, IERR ) * * ELSE IF( UPPER ) THEN * * CALL SGSVJ0( JOBV, N4, N4, A, LDA, WORK, SVA, MVL, V, LDV, $ EPSLN, SFMIN, TOL, 2, WORK( N+1 ), LWORK-N, $ IERR ) * CALL SGSVJ0( JOBV, N2, N4, A( 1, N4+1 ), LDA, WORK( N4+1 ), $ SVA( N4+1 ), MVL, V( N4*q+1, N4+1 ), LDV, $ EPSLN, SFMIN, TOL, 1, WORK( N+1 ), LWORK-N, $ IERR ) * CALL SGSVJ1( JOBV, N2, N2, N4, A, LDA, WORK, SVA, MVL, V, $ LDV, EPSLN, SFMIN, TOL, 1, WORK( N+1 ), $ LWORK-N, IERR ) * CALL SGSVJ0( JOBV, N2+N4, N4, A( 1, N2+1 ), LDA, $ WORK( N2+1 ), SVA( N2+1 ), MVL, $ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1, $ WORK( N+1 ), LWORK-N, IERR ) END IF * END IF * * .. Row-cyclic pivot strategy with de Rijk's pivoting .. * DO 1993 i = 1, NSWEEP * * .. go go go ... * MXAAPQ = ZERO MXSINJ = ZERO ISWROT = 0 * NOTROT = 0 PSKIPPED = 0 * * Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs * 1 <= p < q <= N. This is the first step toward a blocked implementation * of the rotations. New implementation, based on block transformations, * is under development. * DO 2000 ibr = 1, NBL * igl = ( ibr-1 )*KBL + 1 * DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr ) * igl = igl + ir1*KBL * DO 2001 p = igl, MIN0( igl+KBL-1, N-1 ) * * .. de Rijk's pivoting * q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1 IF( p.NE.q ) THEN CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 ) IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1, $ V( 1, q ), 1 ) TEMP1 = SVA( p ) SVA( p ) = SVA( q ) SVA( q ) = TEMP1 TEMP1 = WORK( p ) WORK( p ) = WORK( q ) WORK( q ) = TEMP1 END IF * IF( ir1.EQ.0 ) THEN * * Column norms are periodically updated by explicit * norm computation. * Caveat: * Unfortunately, some BLAS implementations compute SNRM2(M,A(1,p),1) * as SQRT(SDOT(M,A(1,p),1,A(1,p),1)), which may cause the result to * overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to * underflow for ||A(:,p)||_2 < SQRT(underflow_threshold). * Hence, SNRM2 cannot be trusted, not even in the case when * the true norm is far from the under(over)flow boundaries. * If properly implemented SNRM2 is available, the IF-THEN-ELSE * below should read "AAPP = SNRM2( M, A(1,p), 1 ) * WORK(p)". * IF( ( SVA( p ).LT.ROOTBIG ) .AND. $ ( SVA( p ).GT.ROOTSFMIN ) ) THEN SVA( p ) = SNRM2( M, A( 1, p ), 1 )*WORK( p ) ELSE TEMP1 = ZERO AAPP = ONE CALL SLASSQ( M, A( 1, p ), 1, TEMP1, AAPP ) SVA( p ) = TEMP1*SQRT( AAPP )*WORK( p ) END IF AAPP = SVA( p ) ELSE AAPP = SVA( p ) END IF * IF( AAPP.GT.ZERO ) THEN * PSKIPPED = 0 * DO 2002 q = p + 1, MIN0( igl+KBL-1, N ) * AAQQ = SVA( q ) * IF( AAQQ.GT.ZERO ) THEN * AAPP0 = AAPP IF( AAQQ.GE.ONE ) THEN ROTOK = ( SMALL*AAPP ).LE.AAQQ IF( AAPP.LT.( BIG / AAQQ ) ) THEN AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1, $ q ), 1 )*WORK( p )*WORK( q ) / $ AAQQ ) / AAPP ELSE CALL SCOPY( M, A( 1, p ), 1, $ WORK( N+1 ), 1 ) CALL SLASCL( 'G', 0, 0, AAPP, $ WORK( p ), M, 1, $ WORK( N+1 ), LDA, IERR ) AAPQ = SDOT( M, WORK( N+1 ), 1, $ A( 1, q ), 1 )*WORK( q ) / AAQQ END IF ELSE ROTOK = AAPP.LE.( AAQQ / SMALL ) IF( AAPP.GT.( SMALL / AAQQ ) ) THEN AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1, $ q ), 1 )*WORK( p )*WORK( q ) / $ AAQQ ) / AAPP ELSE CALL SCOPY( M, A( 1, q ), 1, $ WORK( N+1 ), 1 ) CALL SLASCL( 'G', 0, 0, AAQQ, $ WORK( q ), M, 1, $ WORK( N+1 ), LDA, IERR ) AAPQ = SDOT( M, WORK( N+1 ), 1, $ A( 1, p ), 1 )*WORK( p ) / AAPP END IF END IF * MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) ) * * TO rotate or NOT to rotate, THAT is the question ... * IF( ABS( AAPQ ).GT.TOL ) THEN * * .. rotate *[RTD] ROTATED = ROTATED + ONE * IF( ir1.EQ.0 ) THEN NOTROT = 0 PSKIPPED = 0 ISWROT = ISWROT + 1 END IF * IF( ROTOK ) THEN * AQOAP = AAQQ / AAPP APOAQ = AAPP / AAQQ THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ * IF( ABS( THETA ).GT.BIGTHETA ) THEN * T = HALF / THETA FASTR( 3 ) = T*WORK( p ) / WORK( q ) FASTR( 4 ) = -T*WORK( q ) / $ WORK( p ) CALL SROTM( M, A( 1, p ), 1, $ A( 1, q ), 1, FASTR ) IF( RSVEC )CALL SROTM( MVL, $ V( 1, p ), 1, $ V( 1, q ), 1, $ FASTR ) SVA( q ) = AAQQ*SQRT( AMAX1( ZERO, $ ONE+T*APOAQ*AAPQ ) ) AAPP = AAPP*SQRT( AMAX1( ZERO, $ ONE-T*AQOAP*AAPQ ) ) MXSINJ = AMAX1( MXSINJ, ABS( T ) ) * ELSE * * .. choose correct signum for THETA and rotate * THSIGN = -SIGN( ONE, AAPQ ) T = ONE / ( THETA+THSIGN* $ SQRT( ONE+THETA*THETA ) ) CS = SQRT( ONE / ( ONE+T*T ) ) SN = T*CS * MXSINJ = AMAX1( MXSINJ, ABS( SN ) ) SVA( q ) = AAQQ*SQRT( AMAX1( ZERO, $ ONE+T*APOAQ*AAPQ ) ) AAPP = AAPP*SQRT( AMAX1( ZERO, $ ONE-T*AQOAP*AAPQ ) ) * APOAQ = WORK( p ) / WORK( q ) AQOAP = WORK( q ) / WORK( p ) IF( WORK( p ).GE.ONE ) THEN IF( WORK( q ).GE.ONE ) THEN FASTR( 3 ) = T*APOAQ FASTR( 4 ) = -T*AQOAP WORK( p ) = WORK( p )*CS WORK( q ) = WORK( q )*CS CALL SROTM( M, A( 1, p ), 1, $ A( 1, q ), 1, $ FASTR ) IF( RSVEC )CALL SROTM( MVL, $ V( 1, p ), 1, V( 1, q ), $ 1, FASTR ) ELSE CALL SAXPY( M, -T*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) CALL SAXPY( M, CS*SN*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) WORK( p ) = WORK( p )*CS WORK( q ) = WORK( q ) / CS IF( RSVEC ) THEN CALL SAXPY( MVL, -T*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) CALL SAXPY( MVL, $ CS*SN*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) END IF END IF ELSE IF( WORK( q ).GE.ONE ) THEN CALL SAXPY( M, T*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) CALL SAXPY( M, -CS*SN*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) WORK( p ) = WORK( p ) / CS WORK( q ) = WORK( q )*CS IF( RSVEC ) THEN CALL SAXPY( MVL, T*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) CALL SAXPY( MVL, $ -CS*SN*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) END IF ELSE IF( WORK( p ).GE.WORK( q ) ) $ THEN CALL SAXPY( M, -T*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) CALL SAXPY( M, CS*SN*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) WORK( p ) = WORK( p )*CS WORK( q ) = WORK( q ) / CS IF( RSVEC ) THEN CALL SAXPY( MVL, $ -T*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) CALL SAXPY( MVL, $ CS*SN*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) END IF ELSE CALL SAXPY( M, T*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) CALL SAXPY( M, $ -CS*SN*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) WORK( p ) = WORK( p ) / CS WORK( q ) = WORK( q )*CS IF( RSVEC ) THEN CALL SAXPY( MVL, $ T*APOAQ, V( 1, p ), $ 1, V( 1, q ), 1 ) CALL SAXPY( MVL, $ -CS*SN*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) END IF END IF END IF END IF END IF * ELSE * .. have to use modified Gram-Schmidt like transformation CALL SCOPY( M, A( 1, p ), 1, $ WORK( N+1 ), 1 ) CALL SLASCL( 'G', 0, 0, AAPP, ONE, M, $ 1, WORK( N+1 ), LDA, $ IERR ) CALL SLASCL( 'G', 0, 0, AAQQ, ONE, M, $ 1, A( 1, q ), LDA, IERR ) TEMP1 = -AAPQ*WORK( p ) / WORK( q ) CALL SAXPY( M, TEMP1, WORK( N+1 ), 1, $ A( 1, q ), 1 ) CALL SLASCL( 'G', 0, 0, ONE, AAQQ, M, $ 1, A( 1, q ), LDA, IERR ) SVA( q ) = AAQQ*SQRT( AMAX1( ZERO, $ ONE-AAPQ*AAPQ ) ) MXSINJ = AMAX1( MXSINJ, SFMIN ) END IF * END IF ROTOK THEN ... ELSE * * In the case of cancellation in updating SVA(q), SVA(p) * recompute SVA(q), SVA(p). * IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS ) $ THEN IF( ( AAQQ.LT.ROOTBIG ) .AND. $ ( AAQQ.GT.ROOTSFMIN ) ) THEN SVA( q ) = SNRM2( M, A( 1, q ), 1 )* $ WORK( q ) ELSE T = ZERO AAQQ = ONE CALL SLASSQ( M, A( 1, q ), 1, T, $ AAQQ ) SVA( q ) = T*SQRT( AAQQ )*WORK( q ) END IF END IF IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN IF( ( AAPP.LT.ROOTBIG ) .AND. $ ( AAPP.GT.ROOTSFMIN ) ) THEN AAPP = SNRM2( M, A( 1, p ), 1 )* $ WORK( p ) ELSE T = ZERO AAPP = ONE CALL SLASSQ( M, A( 1, p ), 1, T, $ AAPP ) AAPP = T*SQRT( AAPP )*WORK( p ) END IF SVA( p ) = AAPP END IF * ELSE * A(:,p) and A(:,q) already numerically orthogonal IF( ir1.EQ.0 )NOTROT = NOTROT + 1 *[RTD] SKIPPED = SKIPPED + 1 PSKIPPED = PSKIPPED + 1 END IF ELSE * A(:,q) is zero column IF( ir1.EQ.0 )NOTROT = NOTROT + 1 PSKIPPED = PSKIPPED + 1 END IF * IF( ( i.LE.SWBAND ) .AND. $ ( PSKIPPED.GT.ROWSKIP ) ) THEN IF( ir1.EQ.0 )AAPP = -AAPP NOTROT = 0 GO TO 2103 END IF * 2002 CONTINUE * END q-LOOP * 2103 CONTINUE * bailed out of q-loop * SVA( p ) = AAPP * ELSE SVA( p ) = AAPP IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) ) $ NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p END IF * 2001 CONTINUE * end of the p-loop * end of doing the block ( ibr, ibr ) 1002 CONTINUE * end of ir1-loop * * ... go to the off diagonal blocks * igl = ( ibr-1 )*KBL + 1 * DO 2010 jbc = ibr + 1, NBL * jgl = ( jbc-1 )*KBL + 1 * * doing the block at ( ibr, jbc ) * IJBLSK = 0 DO 2100 p = igl, MIN0( igl+KBL-1, N ) * AAPP = SVA( p ) IF( AAPP.GT.ZERO ) THEN * PSKIPPED = 0 * DO 2200 q = jgl, MIN0( jgl+KBL-1, N ) * AAQQ = SVA( q ) IF( AAQQ.GT.ZERO ) THEN AAPP0 = AAPP * * .. M x 2 Jacobi SVD .. * * Safe Gram matrix computation * IF( AAQQ.GE.ONE ) THEN IF( AAPP.GE.AAQQ ) THEN ROTOK = ( SMALL*AAPP ).LE.AAQQ ELSE ROTOK = ( SMALL*AAQQ ).LE.AAPP END IF IF( AAPP.LT.( BIG / AAQQ ) ) THEN AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1, $ q ), 1 )*WORK( p )*WORK( q ) / $ AAQQ ) / AAPP ELSE CALL SCOPY( M, A( 1, p ), 1, $ WORK( N+1 ), 1 ) CALL SLASCL( 'G', 0, 0, AAPP, $ WORK( p ), M, 1, $ WORK( N+1 ), LDA, IERR ) AAPQ = SDOT( M, WORK( N+1 ), 1, $ A( 1, q ), 1 )*WORK( q ) / AAQQ END IF ELSE IF( AAPP.GE.AAQQ ) THEN ROTOK = AAPP.LE.( AAQQ / SMALL ) ELSE ROTOK = AAQQ.LE.( AAPP / SMALL ) END IF IF( AAPP.GT.( SMALL / AAQQ ) ) THEN AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1, $ q ), 1 )*WORK( p )*WORK( q ) / $ AAQQ ) / AAPP ELSE CALL SCOPY( M, A( 1, q ), 1, $ WORK( N+1 ), 1 ) CALL SLASCL( 'G', 0, 0, AAQQ, $ WORK( q ), M, 1, $ WORK( N+1 ), LDA, IERR ) AAPQ = SDOT( M, WORK( N+1 ), 1, $ A( 1, p ), 1 )*WORK( p ) / AAPP END IF END IF * MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) ) * * TO rotate or NOT to rotate, THAT is the question ... * IF( ABS( AAPQ ).GT.TOL ) THEN NOTROT = 0 *[RTD] ROTATED = ROTATED + 1 PSKIPPED = 0 ISWROT = ISWROT + 1 * IF( ROTOK ) THEN * AQOAP = AAQQ / AAPP APOAQ = AAPP / AAQQ THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ IF( AAQQ.GT.AAPP0 )THETA = -THETA * IF( ABS( THETA ).GT.BIGTHETA ) THEN T = HALF / THETA FASTR( 3 ) = T*WORK( p ) / WORK( q ) FASTR( 4 ) = -T*WORK( q ) / $ WORK( p ) CALL SROTM( M, A( 1, p ), 1, $ A( 1, q ), 1, FASTR ) IF( RSVEC )CALL SROTM( MVL, $ V( 1, p ), 1, $ V( 1, q ), 1, $ FASTR ) SVA( q ) = AAQQ*SQRT( AMAX1( ZERO, $ ONE+T*APOAQ*AAPQ ) ) AAPP = AAPP*SQRT( AMAX1( ZERO, $ ONE-T*AQOAP*AAPQ ) ) MXSINJ = AMAX1( MXSINJ, ABS( T ) ) ELSE * * .. choose correct signum for THETA and rotate * THSIGN = -SIGN( ONE, AAPQ ) IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN T = ONE / ( THETA+THSIGN* $ SQRT( ONE+THETA*THETA ) ) CS = SQRT( ONE / ( ONE+T*T ) ) SN = T*CS MXSINJ = AMAX1( MXSINJ, ABS( SN ) ) SVA( q ) = AAQQ*SQRT( AMAX1( ZERO, $ ONE+T*APOAQ*AAPQ ) ) AAPP = AAPP*SQRT( AMAX1( ZERO, $ ONE-T*AQOAP*AAPQ ) ) * APOAQ = WORK( p ) / WORK( q ) AQOAP = WORK( q ) / WORK( p ) IF( WORK( p ).GE.ONE ) THEN * IF( WORK( q ).GE.ONE ) THEN FASTR( 3 ) = T*APOAQ FASTR( 4 ) = -T*AQOAP WORK( p ) = WORK( p )*CS WORK( q ) = WORK( q )*CS CALL SROTM( M, A( 1, p ), 1, $ A( 1, q ), 1, $ FASTR ) IF( RSVEC )CALL SROTM( MVL, $ V( 1, p ), 1, V( 1, q ), $ 1, FASTR ) ELSE CALL SAXPY( M, -T*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) CALL SAXPY( M, CS*SN*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) IF( RSVEC ) THEN CALL SAXPY( MVL, -T*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) CALL SAXPY( MVL, $ CS*SN*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) END IF WORK( p ) = WORK( p )*CS WORK( q ) = WORK( q ) / CS END IF ELSE IF( WORK( q ).GE.ONE ) THEN CALL SAXPY( M, T*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) CALL SAXPY( M, -CS*SN*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) IF( RSVEC ) THEN CALL SAXPY( MVL, T*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) CALL SAXPY( MVL, $ -CS*SN*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) END IF WORK( p ) = WORK( p ) / CS WORK( q ) = WORK( q )*CS ELSE IF( WORK( p ).GE.WORK( q ) ) $ THEN CALL SAXPY( M, -T*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) CALL SAXPY( M, CS*SN*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) WORK( p ) = WORK( p )*CS WORK( q ) = WORK( q ) / CS IF( RSVEC ) THEN CALL SAXPY( MVL, $ -T*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) CALL SAXPY( MVL, $ CS*SN*APOAQ, $ V( 1, p ), 1, $ V( 1, q ), 1 ) END IF ELSE CALL SAXPY( M, T*APOAQ, $ A( 1, p ), 1, $ A( 1, q ), 1 ) CALL SAXPY( M, $ -CS*SN*AQOAP, $ A( 1, q ), 1, $ A( 1, p ), 1 ) WORK( p ) = WORK( p ) / CS WORK( q ) = WORK( q )*CS IF( RSVEC ) THEN CALL SAXPY( MVL, $ T*APOAQ, V( 1, p ), $ 1, V( 1, q ), 1 ) CALL SAXPY( MVL, $ -CS*SN*AQOAP, $ V( 1, q ), 1, $ V( 1, p ), 1 ) END IF END IF END IF END IF END IF * ELSE IF( AAPP.GT.AAQQ ) THEN CALL SCOPY( M, A( 1, p ), 1, $ WORK( N+1 ), 1 ) CALL SLASCL( 'G', 0, 0, AAPP, ONE, $ M, 1, WORK( N+1 ), LDA, $ IERR ) CALL SLASCL( 'G', 0, 0, AAQQ, ONE, $ M, 1, A( 1, q ), LDA, $ IERR ) TEMP1 = -AAPQ*WORK( p ) / WORK( q ) CALL SAXPY( M, TEMP1, WORK( N+1 ), $ 1, A( 1, q ), 1 ) CALL SLASCL( 'G', 0, 0, ONE, AAQQ, $ M, 1, A( 1, q ), LDA, $ IERR ) SVA( q ) = AAQQ*SQRT( AMAX1( ZERO, $ ONE-AAPQ*AAPQ ) ) MXSINJ = AMAX1( MXSINJ, SFMIN ) ELSE CALL SCOPY( M, A( 1, q ), 1, $ WORK( N+1 ), 1 ) CALL SLASCL( 'G', 0, 0, AAQQ, ONE, $ M, 1, WORK( N+1 ), LDA, $ IERR ) CALL SLASCL( 'G', 0, 0, AAPP, ONE, $ M, 1, A( 1, p ), LDA, $ IERR ) TEMP1 = -AAPQ*WORK( q ) / WORK( p ) CALL SAXPY( M, TEMP1, WORK( N+1 ), $ 1, A( 1, p ), 1 ) CALL SLASCL( 'G', 0, 0, ONE, AAPP, $ M, 1, A( 1, p ), LDA, $ IERR ) SVA( p ) = AAPP*SQRT( AMAX1( ZERO, $ ONE-AAPQ*AAPQ ) ) MXSINJ = AMAX1( MXSINJ, SFMIN ) END IF END IF * END IF ROTOK THEN ... ELSE * * In the case of cancellation in updating SVA(q) * .. recompute SVA(q) IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS ) $ THEN IF( ( AAQQ.LT.ROOTBIG ) .AND. $ ( AAQQ.GT.ROOTSFMIN ) ) THEN SVA( q ) = SNRM2( M, A( 1, q ), 1 )* $ WORK( q ) ELSE T = ZERO AAQQ = ONE CALL SLASSQ( M, A( 1, q ), 1, T, $ AAQQ ) SVA( q ) = T*SQRT( AAQQ )*WORK( q ) END IF END IF IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN IF( ( AAPP.LT.ROOTBIG ) .AND. $ ( AAPP.GT.ROOTSFMIN ) ) THEN AAPP = SNRM2( M, A( 1, p ), 1 )* $ WORK( p ) ELSE T = ZERO AAPP = ONE CALL SLASSQ( M, A( 1, p ), 1, T, $ AAPP ) AAPP = T*SQRT( AAPP )*WORK( p ) END IF SVA( p ) = AAPP END IF * end of OK rotation ELSE NOTROT = NOTROT + 1 *[RTD] SKIPPED = SKIPPED + 1 PSKIPPED = PSKIPPED + 1 IJBLSK = IJBLSK + 1 END IF ELSE NOTROT = NOTROT + 1 PSKIPPED = PSKIPPED + 1 IJBLSK = IJBLSK + 1 END IF * IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) ) $ THEN SVA( p ) = AAPP NOTROT = 0 GO TO 2011 END IF IF( ( i.LE.SWBAND ) .AND. $ ( PSKIPPED.GT.ROWSKIP ) ) THEN AAPP = -AAPP NOTROT = 0 GO TO 2203 END IF * 2200 CONTINUE * end of the q-loop 2203 CONTINUE * SVA( p ) = AAPP * ELSE * IF( AAPP.EQ.ZERO )NOTROT = NOTROT + $ MIN0( jgl+KBL-1, N ) - jgl + 1 IF( AAPP.LT.ZERO )NOTROT = 0 * END IF * 2100 CONTINUE * end of the p-loop 2010 CONTINUE * end of the jbc-loop 2011 CONTINUE *2011 bailed out of the jbc-loop DO 2012 p = igl, MIN0( igl+KBL-1, N ) SVA( p ) = ABS( SVA( p ) ) 2012 CONTINUE *** 2000 CONTINUE *2000 :: end of the ibr-loop * * .. update SVA(N) IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) ) $ THEN SVA( N ) = SNRM2( M, A( 1, N ), 1 )*WORK( N ) ELSE T = ZERO AAPP = ONE CALL SLASSQ( M, A( 1, N ), 1, T, AAPP ) SVA( N ) = T*SQRT( AAPP )*WORK( N ) END IF * * Additional steering devices * IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR. $ ( ISWROT.LE.N ) ) )SWBAND = i * IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( FLOAT( N ) )* $ TOL ) .AND. ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN GO TO 1994 END IF * IF( NOTROT.GE.EMPTSW )GO TO 1994 * 1993 CONTINUE * end i=1:NSWEEP loop * * #:( Reaching this point means that the procedure has not converged. INFO = NSWEEP - 1 GO TO 1995 * 1994 CONTINUE * #:) Reaching this point means numerical convergence after the i-th * sweep. * INFO = 0 * #:) INFO = 0 confirms successful iterations. 1995 CONTINUE * * Sort the singular values and find how many are above * the underflow threshold. * N2 = 0 N4 = 0 DO 5991 p = 1, N - 1 q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1 IF( p.NE.q ) THEN TEMP1 = SVA( p ) SVA( p ) = SVA( q ) SVA( q ) = TEMP1 TEMP1 = WORK( p ) WORK( p ) = WORK( q ) WORK( q ) = TEMP1 CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 ) IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 ) END IF IF( SVA( p ).NE.ZERO ) THEN N4 = N4 + 1 IF( SVA( p )*SKL.GT.SFMIN )N2 = N2 + 1 END IF 5991 CONTINUE IF( SVA( N ).NE.ZERO ) THEN N4 = N4 + 1 IF( SVA( N )*SKL.GT.SFMIN )N2 = N2 + 1 END IF * * Normalize the left singular vectors. * IF( LSVEC .OR. UCTOL ) THEN DO 1998 p = 1, N2 CALL SSCAL( M, WORK( p ) / SVA( p ), A( 1, p ), 1 ) 1998 CONTINUE END IF * * Scale the product of Jacobi rotations (assemble the fast rotations). * IF( RSVEC ) THEN IF( APPLV ) THEN DO 2398 p = 1, N CALL SSCAL( MVL, WORK( p ), V( 1, p ), 1 ) 2398 CONTINUE ELSE DO 2399 p = 1, N TEMP1 = ONE / SNRM2( MVL, V( 1, p ), 1 ) CALL SSCAL( MVL, TEMP1, V( 1, p ), 1 ) 2399 CONTINUE END IF END IF * * Undo scaling, if necessary (and possible). IF( ( ( SKL.GT.ONE ) .AND. ( SVA( 1 ).LT.( BIG / $ SKL ) ) ) .OR. ( ( SKL.LT.ONE ) .AND. ( SVA( N2 ).GT. $ ( SFMIN / SKL ) ) ) ) THEN DO 2400 p = 1, N SVA( p ) = SKL*SVA( p ) 2400 CONTINUE SKL = ONE END IF * WORK( 1 ) = SKL * The singular values of A are SKL*SVA(1:N). If SKL.NE.ONE * then some of the singular values may overflow or underflow and * the spectrum is given in this factored representation. * WORK( 2 ) = FLOAT( N4 ) * N4 is the number of computed nonzero singular values of A. * WORK( 3 ) = FLOAT( N2 ) * N2 is the number of singular values of A greater than SFMIN. * If N2 * that may carry some information. * WORK( 4 ) = FLOAT( i ) * i is the index of the last sweep before declaring convergence. * WORK( 5 ) = MXAAPQ * MXAAPQ is the largest absolute value of scaled pivots in the * last sweep * WORK( 6 ) = MXSINJ * MXSINJ is the largest absolute value of the sines of Jacobi angles * in the last sweep * RETURN * .. * .. END OF SGESVJ * .. END |