1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
SUBROUTINE SGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
$ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, $ IWORK, INFO ) * * -- LAPACK driver routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER JOBQ, JOBU, JOBV INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL A( LDA, * ), ALPHA( * ), B( LDB, * ), $ BETA( * ), Q( LDQ, * ), U( LDU, * ), $ V( LDV, * ), WORK( * ) * .. * * Purpose * ======= * * SGGSVD computes the generalized singular value decomposition (GSVD) * of an M-by-N real matrix A and P-by-N real matrix B: * * U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R ) * * where U, V and Q are orthogonal matrices. * Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T, * then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and * D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the * following structures, respectively: * * If M-K-L >= 0, * * K L * D1 = K ( I 0 ) * L ( 0 C ) * M-K-L ( 0 0 ) * * K L * D2 = L ( 0 S ) * P-L ( 0 0 ) * * N-K-L K L * ( 0 R ) = K ( 0 R11 R12 ) * L ( 0 0 R22 ) * * where * * C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), * S = diag( BETA(K+1), ... , BETA(K+L) ), * C**2 + S**2 = I. * * R is stored in A(1:K+L,N-K-L+1:N) on exit. * * If M-K-L < 0, * * K M-K K+L-M * D1 = K ( I 0 0 ) * M-K ( 0 C 0 ) * * K M-K K+L-M * D2 = M-K ( 0 S 0 ) * K+L-M ( 0 0 I ) * P-L ( 0 0 0 ) * * N-K-L K M-K K+L-M * ( 0 R ) = K ( 0 R11 R12 R13 ) * M-K ( 0 0 R22 R23 ) * K+L-M ( 0 0 0 R33 ) * * where * * C = diag( ALPHA(K+1), ... , ALPHA(M) ), * S = diag( BETA(K+1), ... , BETA(M) ), * C**2 + S**2 = I. * * (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored * ( 0 R22 R23 ) * in B(M-K+1:L,N+M-K-L+1:N) on exit. * * The routine computes C, S, R, and optionally the orthogonal * transformation matrices U, V and Q. * * In particular, if B is an N-by-N nonsingular matrix, then the GSVD of * A and B implicitly gives the SVD of A*inv(B): * A*inv(B) = U*(D1*inv(D2))*V**T. * If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is * also equal to the CS decomposition of A and B. Furthermore, the GSVD * can be used to derive the solution of the eigenvalue problem: * A**T*A x = lambda* B**T*B x. * In some literature, the GSVD of A and B is presented in the form * U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 ) * where U and V are orthogonal and X is nonsingular, D1 and D2 are * ``diagonal''. The former GSVD form can be converted to the latter * form by taking the nonsingular matrix X as * * X = Q*( I 0 ) * ( 0 inv(R) ). * * Arguments * ========= * * JOBU (input) CHARACTER*1 * = 'U': Orthogonal matrix U is computed; * = 'N': U is not computed. * * JOBV (input) CHARACTER*1 * = 'V': Orthogonal matrix V is computed; * = 'N': V is not computed. * * JOBQ (input) CHARACTER*1 * = 'Q': Orthogonal matrix Q is computed; * = 'N': Q is not computed. * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrices A and B. N >= 0. * * P (input) INTEGER * The number of rows of the matrix B. P >= 0. * * K (output) INTEGER * L (output) INTEGER * On exit, K and L specify the dimension of the subblocks * described in the Purpose section. * K + L = effective numerical rank of (A**T,B**T)**T. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, A contains the triangular matrix R, or part of R. * See Purpose for details. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * B (input/output) REAL array, dimension (LDB,N) * On entry, the P-by-N matrix B. * On exit, B contains the triangular matrix R if M-K-L < 0. * See Purpose for details. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,P). * * ALPHA (output) REAL array, dimension (N) * BETA (output) REAL array, dimension (N) * On exit, ALPHA and BETA contain the generalized singular * value pairs of A and B; * ALPHA(1:K) = 1, * BETA(1:K) = 0, * and if M-K-L >= 0, * ALPHA(K+1:K+L) = C, * BETA(K+1:K+L) = S, * or if M-K-L < 0, * ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 * BETA(K+1:M) =S, BETA(M+1:K+L) =1 * and * ALPHA(K+L+1:N) = 0 * BETA(K+L+1:N) = 0 * * U (output) REAL array, dimension (LDU,M) * If JOBU = 'U', U contains the M-by-M orthogonal matrix U. * If JOBU = 'N', U is not referenced. * * LDU (input) INTEGER * The leading dimension of the array U. LDU >= max(1,M) if * JOBU = 'U'; LDU >= 1 otherwise. * * V (output) REAL array, dimension (LDV,P) * If JOBV = 'V', V contains the P-by-P orthogonal matrix V. * If JOBV = 'N', V is not referenced. * * LDV (input) INTEGER * The leading dimension of the array V. LDV >= max(1,P) if * JOBV = 'V'; LDV >= 1 otherwise. * * Q (output) REAL array, dimension (LDQ,N) * If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. * If JOBQ = 'N', Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max(1,N) if * JOBQ = 'Q'; LDQ >= 1 otherwise. * * WORK (workspace) REAL array, * dimension (max(3*N,M,P)+N) * * IWORK (workspace/output) INTEGER array, dimension (N) * On exit, IWORK stores the sorting information. More * precisely, the following loop will sort ALPHA * for I = K+1, min(M,K+L) * swap ALPHA(I) and ALPHA(IWORK(I)) * endfor * such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = 1, the Jacobi-type procedure failed to * converge. For further details, see subroutine STGSJA. * * Internal Parameters * =================== * * TOLA REAL * TOLB REAL * TOLA and TOLB are the thresholds to determine the effective * rank of (A**T,B**T)**T. Generally, they are set to * TOLA = MAX(M,N)*norm(A)*MACHEPS, * TOLB = MAX(P,N)*norm(B)*MACHEPS. * The size of TOLA and TOLB may affect the size of backward * errors of the decomposition. * * Further Details * =============== * * 2-96 Based on modifications by * Ming Gu and Huan Ren, Computer Science Division, University of * California at Berkeley, USA * * ===================================================================== * * .. Local Scalars .. LOGICAL WANTQ, WANTU, WANTV INTEGER I, IBND, ISUB, J, NCYCLE REAL ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH, SLANGE EXTERNAL LSAME, SLAMCH, SLANGE * .. * .. External Subroutines .. EXTERNAL SCOPY, SGGSVP, STGSJA, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * WANTU = LSAME( JOBU, 'U' ) WANTV = LSAME( JOBV, 'V' ) WANTQ = LSAME( JOBQ, 'Q' ) * INFO = 0 IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN INFO = -2 ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( P.LT.0 ) THEN INFO = -6 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -10 ELSE IF( LDB.LT.MAX( 1, P ) ) THEN INFO = -12 ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN INFO = -16 ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN INFO = -18 ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN INFO = -20 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGGSVD', -INFO ) RETURN END IF * * Compute the Frobenius norm of matrices A and B * ANORM = SLANGE( '1', M, N, A, LDA, WORK ) BNORM = SLANGE( '1', P, N, B, LDB, WORK ) * * Get machine precision and set up threshold for determining * the effective numerical rank of the matrices A and B. * ULP = SLAMCH( 'Precision' ) UNFL = SLAMCH( 'Safe Minimum' ) TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP * * Preprocessing * CALL SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, $ TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK, $ WORK( N+1 ), INFO ) * * Compute the GSVD of two upper "triangular" matrices * CALL STGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB, $ TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, $ WORK, NCYCLE, INFO ) * * Sort the singular values and store the pivot indices in IWORK * Copy ALPHA to WORK, then sort ALPHA in WORK * CALL SCOPY( N, ALPHA, 1, WORK, 1 ) IBND = MIN( L, M-K ) DO 20 I = 1, IBND * * Scan for largest ALPHA(K+I) * ISUB = I SMAX = WORK( K+I ) DO 10 J = I + 1, IBND TEMP = WORK( K+J ) IF( TEMP.GT.SMAX ) THEN ISUB = J SMAX = TEMP END IF 10 CONTINUE IF( ISUB.NE.I ) THEN WORK( K+ISUB ) = WORK( K+I ) WORK( K+I ) = SMAX IWORK( K+I ) = K + ISUB ELSE IWORK( K+I ) = K + I END IF 20 CONTINUE * RETURN * * End of SGGSVD * END |