1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
SUBROUTINE SGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
$ DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, $ WORK, IWORK, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER FACT, TRANS INTEGER INFO, LDB, LDX, N, NRHS REAL RCOND * .. * .. Array Arguments .. INTEGER IPIV( * ), IWORK( * ) REAL B( LDB, * ), BERR( * ), D( * ), DF( * ), $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ), $ FERR( * ), WORK( * ), X( LDX, * ) * .. * * Purpose * ======= * * SGTSVX uses the LU factorization to compute the solution to a real * system of linear equations A * X = B or A**T * X = B, * where A is a tridiagonal matrix of order N and X and B are N-by-NRHS * matrices. * * Error bounds on the solution and a condition estimate are also * provided. * * Description * =========== * * The following steps are performed: * * 1. If FACT = 'N', the LU decomposition is used to factor the matrix A * as A = L * U, where L is a product of permutation and unit lower * bidiagonal matrices and U is upper triangular with nonzeros in * only the main diagonal and first two superdiagonals. * * 2. If some U(i,i)=0, so that U is exactly singular, then the routine * returns with INFO = i. Otherwise, the factored form of A is used * to estimate the condition number of the matrix A. If the * reciprocal of the condition number is less than machine precision, * INFO = N+1 is returned as a warning, but the routine still goes on * to solve for X and compute error bounds as described below. * * 3. The system of equations is solved for X using the factored form * of A. * * 4. Iterative refinement is applied to improve the computed solution * matrix and calculate error bounds and backward error estimates * for it. * * Arguments * ========= * * FACT (input) CHARACTER*1 * Specifies whether or not the factored form of A has been * supplied on entry. * = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored * form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV * will not be modified. * = 'N': The matrix will be copied to DLF, DF, and DUF * and factored. * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A * X = B (No transpose) * = 'T': A**T * X = B (Transpose) * = 'C': A**H * X = B (Conjugate transpose = Transpose) * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * DL (input) REAL array, dimension (N-1) * The (n-1) subdiagonal elements of A. * * D (input) REAL array, dimension (N) * The n diagonal elements of A. * * DU (input) REAL array, dimension (N-1) * The (n-1) superdiagonal elements of A. * * DLF (input or output) REAL array, dimension (N-1) * If FACT = 'F', then DLF is an input argument and on entry * contains the (n-1) multipliers that define the matrix L from * the LU factorization of A as computed by SGTTRF. * * If FACT = 'N', then DLF is an output argument and on exit * contains the (n-1) multipliers that define the matrix L from * the LU factorization of A. * * DF (input or output) REAL array, dimension (N) * If FACT = 'F', then DF is an input argument and on entry * contains the n diagonal elements of the upper triangular * matrix U from the LU factorization of A. * * If FACT = 'N', then DF is an output argument and on exit * contains the n diagonal elements of the upper triangular * matrix U from the LU factorization of A. * * DUF (input or output) REAL array, dimension (N-1) * If FACT = 'F', then DUF is an input argument and on entry * contains the (n-1) elements of the first superdiagonal of U. * * If FACT = 'N', then DUF is an output argument and on exit * contains the (n-1) elements of the first superdiagonal of U. * * DU2 (input or output) REAL array, dimension (N-2) * If FACT = 'F', then DU2 is an input argument and on entry * contains the (n-2) elements of the second superdiagonal of * U. * * If FACT = 'N', then DU2 is an output argument and on exit * contains the (n-2) elements of the second superdiagonal of * U. * * IPIV (input or output) INTEGER array, dimension (N) * If FACT = 'F', then IPIV is an input argument and on entry * contains the pivot indices from the LU factorization of A as * computed by SGTTRF. * * If FACT = 'N', then IPIV is an output argument and on exit * contains the pivot indices from the LU factorization of A; * row i of the matrix was interchanged with row IPIV(i). * IPIV(i) will always be either i or i+1; IPIV(i) = i indicates * a row interchange was not required. * * B (input) REAL array, dimension (LDB,NRHS) * The N-by-NRHS right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (output) REAL array, dimension (LDX,NRHS) * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * RCOND (output) REAL * The estimate of the reciprocal condition number of the matrix * A. If RCOND is less than the machine precision (in * particular, if RCOND = 0), the matrix is singular to working * precision. This condition is indicated by a return code of * INFO > 0. * * FERR (output) REAL array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) REAL array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) REAL array, dimension (3*N) * * IWORK (workspace) INTEGER array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, and i is * <= N: U(i,i) is exactly zero. The factorization * has not been completed unless i = N, but the * factor U is exactly singular, so the solution * and error bounds could not be computed. * RCOND = 0 is returned. * = N+1: U is nonsingular, but RCOND is less than machine * precision, meaning that the matrix is singular * to working precision. Nevertheless, the * solution and error bounds are computed because * there are a number of situations where the * computed solution can be more accurate than the * value of RCOND would suggest. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL NOFACT, NOTRAN CHARACTER NORM REAL ANORM * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH, SLANGT EXTERNAL LSAME, SLAMCH, SLANGT * .. * .. External Subroutines .. EXTERNAL SCOPY, SGTCON, SGTRFS, SGTTRF, SGTTRS, SLACPY, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * INFO = 0 NOFACT = LSAME( FACT, 'N' ) NOTRAN = LSAME( TRANS, 'N' ) IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN INFO = -1 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. $ LSAME( TRANS, 'C' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NRHS.LT.0 ) THEN INFO = -4 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -14 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGTSVX', -INFO ) RETURN END IF * IF( NOFACT ) THEN * * Compute the LU factorization of A. * CALL SCOPY( N, D, 1, DF, 1 ) IF( N.GT.1 ) THEN CALL SCOPY( N-1, DL, 1, DLF, 1 ) CALL SCOPY( N-1, DU, 1, DUF, 1 ) END IF CALL SGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO ) * * Return if INFO is non-zero. * IF( INFO.GT.0 )THEN RCOND = ZERO RETURN END IF END IF * * Compute the norm of the matrix A. * IF( NOTRAN ) THEN NORM = '1' ELSE NORM = 'I' END IF ANORM = SLANGT( NORM, N, DL, D, DU ) * * Compute the reciprocal of the condition number of A. * CALL SGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK, $ IWORK, INFO ) * * Compute the solution vectors X. * CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) CALL SGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX, $ INFO ) * * Use iterative refinement to improve the computed solutions and * compute error bounds and backward error estimates for them. * CALL SGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, $ B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO ) * * Set INFO = N+1 if the matrix is singular to working precision. * IF( RCOND.LT.SLAMCH( 'Epsilon' ) ) $ INFO = N + 1 * RETURN * * End of SGTSVX * END |