1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 |
SUBROUTINE SHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
$ ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, $ LWORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2009 -- * * .. Scalar Arguments .. CHARACTER COMPQ, COMPZ, JOB INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N * .. * .. Array Arguments .. REAL ALPHAI( * ), ALPHAR( * ), BETA( * ), $ H( LDH, * ), Q( LDQ, * ), T( LDT, * ), $ WORK( * ), Z( LDZ, * ) * .. * * Purpose * ======= * * SHGEQZ computes the eigenvalues of a real matrix pair (H,T), * where H is an upper Hessenberg matrix and T is upper triangular, * using the double-shift QZ method. * Matrix pairs of this type are produced by the reduction to * generalized upper Hessenberg form of a real matrix pair (A,B): * * A = Q1*H*Z1**T, B = Q1*T*Z1**T, * * as computed by SGGHRD. * * If JOB='S', then the Hessenberg-triangular pair (H,T) is * also reduced to generalized Schur form, * * H = Q*S*Z**T, T = Q*P*Z**T, * * where Q and Z are orthogonal matrices, P is an upper triangular * matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 * diagonal blocks. * * The 1-by-1 blocks correspond to real eigenvalues of the matrix pair * (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of * eigenvalues. * * Additionally, the 2-by-2 upper triangular diagonal blocks of P * corresponding to 2-by-2 blocks of S are reduced to positive diagonal * form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0, * P(j,j) > 0, and P(j+1,j+1) > 0. * * Optionally, the orthogonal matrix Q from the generalized Schur * factorization may be postmultiplied into an input matrix Q1, and the * orthogonal matrix Z may be postmultiplied into an input matrix Z1. * If Q1 and Z1 are the orthogonal matrices from SGGHRD that reduced * the matrix pair (A,B) to generalized upper Hessenberg form, then the * output matrices Q1*Q and Z1*Z are the orthogonal factors from the * generalized Schur factorization of (A,B): * * A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T. * * To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, * of (A,B)) are computed as a pair of values (alpha,beta), where alpha is * complex and beta real. * If beta is nonzero, lambda = alpha / beta is an eigenvalue of the * generalized nonsymmetric eigenvalue problem (GNEP) * A*x = lambda*B*x * and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the * alternate form of the GNEP * mu*A*y = B*y. * Real eigenvalues can be read directly from the generalized Schur * form: * alpha = S(i,i), beta = P(i,i). * * Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix * Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), * pp. 241--256. * * Arguments * ========= * * JOB (input) CHARACTER*1 * = 'E': Compute eigenvalues only; * = 'S': Compute eigenvalues and the Schur form. * * COMPQ (input) CHARACTER*1 * = 'N': Left Schur vectors (Q) are not computed; * = 'I': Q is initialized to the unit matrix and the matrix Q * of left Schur vectors of (H,T) is returned; * = 'V': Q must contain an orthogonal matrix Q1 on entry and * the product Q1*Q is returned. * * COMPZ (input) CHARACTER*1 * = 'N': Right Schur vectors (Z) are not computed; * = 'I': Z is initialized to the unit matrix and the matrix Z * of right Schur vectors of (H,T) is returned; * = 'V': Z must contain an orthogonal matrix Z1 on entry and * the product Z1*Z is returned. * * N (input) INTEGER * The order of the matrices H, T, Q, and Z. N >= 0. * * ILO (input) INTEGER * IHI (input) INTEGER * ILO and IHI mark the rows and columns of H which are in * Hessenberg form. It is assumed that A is already upper * triangular in rows and columns 1:ILO-1 and IHI+1:N. * If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. * * H (input/output) REAL array, dimension (LDH, N) * On entry, the N-by-N upper Hessenberg matrix H. * On exit, if JOB = 'S', H contains the upper quasi-triangular * matrix S from the generalized Schur factorization. * If JOB = 'E', the diagonal blocks of H match those of S, but * the rest of H is unspecified. * * LDH (input) INTEGER * The leading dimension of the array H. LDH >= max( 1, N ). * * T (input/output) REAL array, dimension (LDT, N) * On entry, the N-by-N upper triangular matrix T. * On exit, if JOB = 'S', T contains the upper triangular * matrix P from the generalized Schur factorization; * 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S * are reduced to positive diagonal form, i.e., if H(j+1,j) is * non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and * T(j+1,j+1) > 0. * If JOB = 'E', the diagonal blocks of T match those of P, but * the rest of T is unspecified. * * LDT (input) INTEGER * The leading dimension of the array T. LDT >= max( 1, N ). * * ALPHAR (output) REAL array, dimension (N) * The real parts of each scalar alpha defining an eigenvalue * of GNEP. * * ALPHAI (output) REAL array, dimension (N) * The imaginary parts of each scalar alpha defining an * eigenvalue of GNEP. * If ALPHAI(j) is zero, then the j-th eigenvalue is real; if * positive, then the j-th and (j+1)-st eigenvalues are a * complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). * * BETA (output) REAL array, dimension (N) * The scalars beta that define the eigenvalues of GNEP. * Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and * beta = BETA(j) represent the j-th eigenvalue of the matrix * pair (A,B), in one of the forms lambda = alpha/beta or * mu = beta/alpha. Since either lambda or mu may overflow, * they should not, in general, be computed. * * Q (input/output) REAL array, dimension (LDQ, N) * On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in * the reduction of (A,B) to generalized Hessenberg form. * On exit, if COMPZ = 'I', the orthogonal matrix of left Schur * vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix * of left Schur vectors of (A,B). * Not referenced if COMPZ = 'N'. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= 1. * If COMPQ='V' or 'I', then LDQ >= N. * * Z (input/output) REAL array, dimension (LDZ, N) * On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in * the reduction of (A,B) to generalized Hessenberg form. * On exit, if COMPZ = 'I', the orthogonal matrix of * right Schur vectors of (H,T), and if COMPZ = 'V', the * orthogonal matrix of right Schur vectors of (A,B). * Not referenced if COMPZ = 'N'. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1. * If COMPZ='V' or 'I', then LDZ >= N. * * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) * On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,N). * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * = 1,...,N: the QZ iteration did not converge. (H,T) is not * in Schur form, but ALPHAR(i), ALPHAI(i), and * BETA(i), i=INFO+1,...,N should be correct. * = N+1,...,2*N: the shift calculation failed. (H,T) is not * in Schur form, but ALPHAR(i), ALPHAI(i), and * BETA(i), i=INFO-N+1,...,N should be correct. * * Further Details * =============== * * Iteration counters: * * JITER -- counts iterations. * IITER -- counts iterations run since ILAST was last * changed. This is therefore reset only when a 1-by-1 or * 2-by-2 block deflates off the bottom. * * ===================================================================== * * .. Parameters .. * $ SAFETY = 1.0E+0 ) REAL HALF, ZERO, ONE, SAFETY PARAMETER ( HALF = 0.5E+0, ZERO = 0.0E+0, ONE = 1.0E+0, $ SAFETY = 1.0E+2 ) * .. * .. Local Scalars .. LOGICAL ILAZR2, ILAZRO, ILPIVT, ILQ, ILSCHR, ILZ, $ LQUERY INTEGER ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST, $ ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER, $ JR, MAXIT REAL A11, A12, A1I, A1R, A21, A22, A2I, A2R, AD11, $ AD11L, AD12, AD12L, AD21, AD21L, AD22, AD22L, $ AD32L, AN, ANORM, ASCALE, ATOL, B11, B1A, B1I, $ B1R, B22, B2A, B2I, B2R, BN, BNORM, BSCALE, $ BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL, $ CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX, $ SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1, $ TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L, $ U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR, $ WR2 * .. * .. Local Arrays .. REAL V( 3 ) * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH, SLANHS, SLAPY2, SLAPY3 EXTERNAL LSAME, SLAMCH, SLANHS, SLAPY2, SLAPY3 * .. * .. External Subroutines .. EXTERNAL SLAG2, SLARFG, SLARTG, SLASET, SLASV2, SROT, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, REAL, SQRT * .. * .. Executable Statements .. * * Decode JOB, COMPQ, COMPZ * IF( LSAME( JOB, 'E' ) ) THEN ILSCHR = .FALSE. ISCHUR = 1 ELSE IF( LSAME( JOB, 'S' ) ) THEN ILSCHR = .TRUE. ISCHUR = 2 ELSE ISCHUR = 0 END IF * IF( LSAME( COMPQ, 'N' ) ) THEN ILQ = .FALSE. ICOMPQ = 1 ELSE IF( LSAME( COMPQ, 'V' ) ) THEN ILQ = .TRUE. ICOMPQ = 2 ELSE IF( LSAME( COMPQ, 'I' ) ) THEN ILQ = .TRUE. ICOMPQ = 3 ELSE ICOMPQ = 0 END IF * IF( LSAME( COMPZ, 'N' ) ) THEN ILZ = .FALSE. ICOMPZ = 1 ELSE IF( LSAME( COMPZ, 'V' ) ) THEN ILZ = .TRUE. ICOMPZ = 2 ELSE IF( LSAME( COMPZ, 'I' ) ) THEN ILZ = .TRUE. ICOMPZ = 3 ELSE ICOMPZ = 0 END IF * * Check Argument Values * INFO = 0 WORK( 1 ) = MAX( 1, N ) LQUERY = ( LWORK.EQ.-1 ) IF( ISCHUR.EQ.0 ) THEN INFO = -1 ELSE IF( ICOMPQ.EQ.0 ) THEN INFO = -2 ELSE IF( ICOMPZ.EQ.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( ILO.LT.1 ) THEN INFO = -5 ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN INFO = -6 ELSE IF( LDH.LT.N ) THEN INFO = -8 ELSE IF( LDT.LT.N ) THEN INFO = -10 ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN INFO = -15 ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN INFO = -17 ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN INFO = -19 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SHGEQZ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.LE.0 ) THEN WORK( 1 ) = REAL( 1 ) RETURN END IF * * Initialize Q and Z * IF( ICOMPQ.EQ.3 ) $ CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ ) IF( ICOMPZ.EQ.3 ) $ CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDZ ) * * Machine Constants * IN = IHI + 1 - ILO SAFMIN = SLAMCH( 'S' ) SAFMAX = ONE / SAFMIN ULP = SLAMCH( 'E' )*SLAMCH( 'B' ) ANORM = SLANHS( 'F', IN, H( ILO, ILO ), LDH, WORK ) BNORM = SLANHS( 'F', IN, T( ILO, ILO ), LDT, WORK ) ATOL = MAX( SAFMIN, ULP*ANORM ) BTOL = MAX( SAFMIN, ULP*BNORM ) ASCALE = ONE / MAX( SAFMIN, ANORM ) BSCALE = ONE / MAX( SAFMIN, BNORM ) * * Set Eigenvalues IHI+1:N * DO 30 J = IHI + 1, N IF( T( J, J ).LT.ZERO ) THEN IF( ILSCHR ) THEN DO 10 JR = 1, J H( JR, J ) = -H( JR, J ) T( JR, J ) = -T( JR, J ) 10 CONTINUE ELSE H( J, J ) = -H( J, J ) T( J, J ) = -T( J, J ) END IF IF( ILZ ) THEN DO 20 JR = 1, N Z( JR, J ) = -Z( JR, J ) 20 CONTINUE END IF END IF ALPHAR( J ) = H( J, J ) ALPHAI( J ) = ZERO BETA( J ) = T( J, J ) 30 CONTINUE * * If IHI < ILO, skip QZ steps * IF( IHI.LT.ILO ) $ GO TO 380 * * MAIN QZ ITERATION LOOP * * Initialize dynamic indices * * Eigenvalues ILAST+1:N have been found. * Column operations modify rows IFRSTM:whatever. * Row operations modify columns whatever:ILASTM. * * If only eigenvalues are being computed, then * IFRSTM is the row of the last splitting row above row ILAST; * this is always at least ILO. * IITER counts iterations since the last eigenvalue was found, * to tell when to use an extraordinary shift. * MAXIT is the maximum number of QZ sweeps allowed. * ILAST = IHI IF( ILSCHR ) THEN IFRSTM = 1 ILASTM = N ELSE IFRSTM = ILO ILASTM = IHI END IF IITER = 0 ESHIFT = ZERO MAXIT = 30*( IHI-ILO+1 ) * DO 360 JITER = 1, MAXIT * * Split the matrix if possible. * * Two tests: * 1: H(j,j-1)=0 or j=ILO * 2: T(j,j)=0 * IF( ILAST.EQ.ILO ) THEN * * Special case: j=ILAST * GO TO 80 ELSE IF( ABS( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN H( ILAST, ILAST-1 ) = ZERO GO TO 80 END IF END IF * IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN T( ILAST, ILAST ) = ZERO GO TO 70 END IF * * General case: j * DO 60 J = ILAST - 1, ILO, -1 * * Test 1: for H(j,j-1)=0 or j=ILO * IF( J.EQ.ILO ) THEN ILAZRO = .TRUE. ELSE IF( ABS( H( J, J-1 ) ).LE.ATOL ) THEN H( J, J-1 ) = ZERO ILAZRO = .TRUE. ELSE ILAZRO = .FALSE. END IF END IF * * Test 2: for T(j,j)=0 * IF( ABS( T( J, J ) ).LT.BTOL ) THEN T( J, J ) = ZERO * * Test 1a: Check for 2 consecutive small subdiagonals in A * ILAZR2 = .FALSE. IF( .NOT.ILAZRO ) THEN TEMP = ABS( H( J, J-1 ) ) TEMP2 = ABS( H( J, J ) ) TEMPR = MAX( TEMP, TEMP2 ) IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN TEMP = TEMP / TEMPR TEMP2 = TEMP2 / TEMPR END IF IF( TEMP*( ASCALE*ABS( H( J+1, J ) ) ).LE.TEMP2* $ ( ASCALE*ATOL ) )ILAZR2 = .TRUE. END IF * * If both tests pass (1 & 2), i.e., the leading diagonal * element of B in the block is zero, split a 1x1 block off * at the top. (I.e., at the J-th row/column) The leading * diagonal element of the remainder can also be zero, so * this may have to be done repeatedly. * IF( ILAZRO .OR. ILAZR2 ) THEN DO 40 JCH = J, ILAST - 1 TEMP = H( JCH, JCH ) CALL SLARTG( TEMP, H( JCH+1, JCH ), C, S, $ H( JCH, JCH ) ) H( JCH+1, JCH ) = ZERO CALL SROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH, $ H( JCH+1, JCH+1 ), LDH, C, S ) CALL SROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT, $ T( JCH+1, JCH+1 ), LDT, C, S ) IF( ILQ ) $ CALL SROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1, $ C, S ) IF( ILAZR2 ) $ H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C ILAZR2 = .FALSE. IF( ABS( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN IF( JCH+1.GE.ILAST ) THEN GO TO 80 ELSE IFIRST = JCH + 1 GO TO 110 END IF END IF T( JCH+1, JCH+1 ) = ZERO 40 CONTINUE GO TO 70 ELSE * * Only test 2 passed -- chase the zero to T(ILAST,ILAST) * Then process as in the case T(ILAST,ILAST)=0 * DO 50 JCH = J, ILAST - 1 TEMP = T( JCH, JCH+1 ) CALL SLARTG( TEMP, T( JCH+1, JCH+1 ), C, S, $ T( JCH, JCH+1 ) ) T( JCH+1, JCH+1 ) = ZERO IF( JCH.LT.ILASTM-1 ) $ CALL SROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT, $ T( JCH+1, JCH+2 ), LDT, C, S ) CALL SROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH, $ H( JCH+1, JCH-1 ), LDH, C, S ) IF( ILQ ) $ CALL SROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1, $ C, S ) TEMP = H( JCH+1, JCH ) CALL SLARTG( TEMP, H( JCH+1, JCH-1 ), C, S, $ H( JCH+1, JCH ) ) H( JCH+1, JCH-1 ) = ZERO CALL SROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1, $ H( IFRSTM, JCH-1 ), 1, C, S ) CALL SROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1, $ T( IFRSTM, JCH-1 ), 1, C, S ) IF( ILZ ) $ CALL SROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1, $ C, S ) 50 CONTINUE GO TO 70 END IF ELSE IF( ILAZRO ) THEN * * Only test 1 passed -- work on J:ILAST * IFIRST = J GO TO 110 END IF * * Neither test passed -- try next J * 60 CONTINUE * * (Drop-through is "impossible") * INFO = N + 1 GO TO 420 * * T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a * 1x1 block. * 70 CONTINUE TEMP = H( ILAST, ILAST ) CALL SLARTG( TEMP, H( ILAST, ILAST-1 ), C, S, $ H( ILAST, ILAST ) ) H( ILAST, ILAST-1 ) = ZERO CALL SROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1, $ H( IFRSTM, ILAST-1 ), 1, C, S ) CALL SROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1, $ T( IFRSTM, ILAST-1 ), 1, C, S ) IF( ILZ ) $ CALL SROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S ) * * H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI, * and BETA * 80 CONTINUE IF( T( ILAST, ILAST ).LT.ZERO ) THEN IF( ILSCHR ) THEN DO 90 J = IFRSTM, ILAST H( J, ILAST ) = -H( J, ILAST ) T( J, ILAST ) = -T( J, ILAST ) 90 CONTINUE ELSE H( ILAST, ILAST ) = -H( ILAST, ILAST ) T( ILAST, ILAST ) = -T( ILAST, ILAST ) END IF IF( ILZ ) THEN DO 100 J = 1, N Z( J, ILAST ) = -Z( J, ILAST ) 100 CONTINUE END IF END IF ALPHAR( ILAST ) = H( ILAST, ILAST ) ALPHAI( ILAST ) = ZERO BETA( ILAST ) = T( ILAST, ILAST ) * * Go to next block -- exit if finished. * ILAST = ILAST - 1 IF( ILAST.LT.ILO ) $ GO TO 380 * * Reset counters * IITER = 0 ESHIFT = ZERO IF( .NOT.ILSCHR ) THEN ILASTM = ILAST IF( IFRSTM.GT.ILAST ) $ IFRSTM = ILO END IF GO TO 350 * * QZ step * * This iteration only involves rows/columns IFIRST:ILAST. We * assume IFIRST < ILAST, and that the diagonal of B is non-zero. * 110 CONTINUE IITER = IITER + 1 IF( .NOT.ILSCHR ) THEN IFRSTM = IFIRST END IF * * Compute single shifts. * * At this point, IFIRST < ILAST, and the diagonal elements of * T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in * magnitude) * IF( ( IITER / 10 )*10.EQ.IITER ) THEN * * Exceptional shift. Chosen for no particularly good reason. * (Single shift only.) * IF( ( REAL( MAXIT )*SAFMIN )*ABS( H( ILAST-1, ILAST ) ).LT. $ ABS( T( ILAST-1, ILAST-1 ) ) ) THEN ESHIFT = ESHIFT + H( ILAST-1, ILAST ) / $ T( ILAST-1, ILAST-1 ) ELSE ESHIFT = ESHIFT + ONE / ( SAFMIN*REAL( MAXIT ) ) END IF S1 = ONE WR = ESHIFT * ELSE * * Shifts based on the generalized eigenvalues of the * bottom-right 2x2 block of A and B. The first eigenvalue * returned by SLAG2 is the Wilkinson shift (AEP p.512), * CALL SLAG2( H( ILAST-1, ILAST-1 ), LDH, $ T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1, $ S2, WR, WR2, WI ) * TEMP = MAX( S1, SAFMIN*MAX( ONE, ABS( WR ), ABS( WI ) ) ) IF( WI.NE.ZERO ) $ GO TO 200 END IF * * Fiddle with shift to avoid overflow * TEMP = MIN( ASCALE, ONE )*( HALF*SAFMAX ) IF( S1.GT.TEMP ) THEN SCALE = TEMP / S1 ELSE SCALE = ONE END IF * TEMP = MIN( BSCALE, ONE )*( HALF*SAFMAX ) IF( ABS( WR ).GT.TEMP ) $ SCALE = MIN( SCALE, TEMP / ABS( WR ) ) S1 = SCALE*S1 WR = SCALE*WR * * Now check for two consecutive small subdiagonals. * DO 120 J = ILAST - 1, IFIRST + 1, -1 ISTART = J TEMP = ABS( S1*H( J, J-1 ) ) TEMP2 = ABS( S1*H( J, J )-WR*T( J, J ) ) TEMPR = MAX( TEMP, TEMP2 ) IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN TEMP = TEMP / TEMPR TEMP2 = TEMP2 / TEMPR END IF IF( ABS( ( ASCALE*H( J+1, J ) )*TEMP ).LE.( ASCALE*ATOL )* $ TEMP2 )GO TO 130 120 CONTINUE * ISTART = IFIRST 130 CONTINUE * * Do an implicit single-shift QZ sweep. * * Initial Q * TEMP = S1*H( ISTART, ISTART ) - WR*T( ISTART, ISTART ) TEMP2 = S1*H( ISTART+1, ISTART ) CALL SLARTG( TEMP, TEMP2, C, S, TEMPR ) * * Sweep * DO 190 J = ISTART, ILAST - 1 IF( J.GT.ISTART ) THEN TEMP = H( J, J-1 ) CALL SLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) ) H( J+1, J-1 ) = ZERO END IF * DO 140 JC = J, ILASTM TEMP = C*H( J, JC ) + S*H( J+1, JC ) H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC ) H( J, JC ) = TEMP TEMP2 = C*T( J, JC ) + S*T( J+1, JC ) T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC ) T( J, JC ) = TEMP2 140 CONTINUE IF( ILQ ) THEN DO 150 JR = 1, N TEMP = C*Q( JR, J ) + S*Q( JR, J+1 ) Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 ) Q( JR, J ) = TEMP 150 CONTINUE END IF * TEMP = T( J+1, J+1 ) CALL SLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) ) T( J+1, J ) = ZERO * DO 160 JR = IFRSTM, MIN( J+2, ILAST ) TEMP = C*H( JR, J+1 ) + S*H( JR, J ) H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J ) H( JR, J+1 ) = TEMP 160 CONTINUE DO 170 JR = IFRSTM, J TEMP = C*T( JR, J+1 ) + S*T( JR, J ) T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J ) T( JR, J+1 ) = TEMP 170 CONTINUE IF( ILZ ) THEN DO 180 JR = 1, N TEMP = C*Z( JR, J+1 ) + S*Z( JR, J ) Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J ) Z( JR, J+1 ) = TEMP 180 CONTINUE END IF 190 CONTINUE * GO TO 350 * * Use Francis double-shift * * Note: the Francis double-shift should work with real shifts, * but only if the block is at least 3x3. * This code may break if this point is reached with * a 2x2 block with real eigenvalues. * 200 CONTINUE IF( IFIRST+1.EQ.ILAST ) THEN * * Special case -- 2x2 block with complex eigenvectors * * Step 1: Standardize, that is, rotate so that * * ( B11 0 ) * B = ( ) with B11 non-negative. * ( 0 B22 ) * CALL SLASV2( T( ILAST-1, ILAST-1 ), T( ILAST-1, ILAST ), $ T( ILAST, ILAST ), B22, B11, SR, CR, SL, CL ) * IF( B11.LT.ZERO ) THEN CR = -CR SR = -SR B11 = -B11 B22 = -B22 END IF * CALL SROT( ILASTM+1-IFIRST, H( ILAST-1, ILAST-1 ), LDH, $ H( ILAST, ILAST-1 ), LDH, CL, SL ) CALL SROT( ILAST+1-IFRSTM, H( IFRSTM, ILAST-1 ), 1, $ H( IFRSTM, ILAST ), 1, CR, SR ) * IF( ILAST.LT.ILASTM ) $ CALL SROT( ILASTM-ILAST, T( ILAST-1, ILAST+1 ), LDT, $ T( ILAST, ILAST+1 ), LDT, CL, SL ) IF( IFRSTM.LT.ILAST-1 ) $ CALL SROT( IFIRST-IFRSTM, T( IFRSTM, ILAST-1 ), 1, $ T( IFRSTM, ILAST ), 1, CR, SR ) * IF( ILQ ) $ CALL SROT( N, Q( 1, ILAST-1 ), 1, Q( 1, ILAST ), 1, CL, $ SL ) IF( ILZ ) $ CALL SROT( N, Z( 1, ILAST-1 ), 1, Z( 1, ILAST ), 1, CR, $ SR ) * T( ILAST-1, ILAST-1 ) = B11 T( ILAST-1, ILAST ) = ZERO T( ILAST, ILAST-1 ) = ZERO T( ILAST, ILAST ) = B22 * * If B22 is negative, negate column ILAST * IF( B22.LT.ZERO ) THEN DO 210 J = IFRSTM, ILAST H( J, ILAST ) = -H( J, ILAST ) T( J, ILAST ) = -T( J, ILAST ) 210 CONTINUE * IF( ILZ ) THEN DO 220 J = 1, N Z( J, ILAST ) = -Z( J, ILAST ) 220 CONTINUE END IF END IF * * Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.) * * Recompute shift * CALL SLAG2( H( ILAST-1, ILAST-1 ), LDH, $ T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1, $ TEMP, WR, TEMP2, WI ) * * If standardization has perturbed the shift onto real line, * do another (real single-shift) QR step. * IF( WI.EQ.ZERO ) $ GO TO 350 S1INV = ONE / S1 * * Do EISPACK (QZVAL) computation of alpha and beta * A11 = H( ILAST-1, ILAST-1 ) A21 = H( ILAST, ILAST-1 ) A12 = H( ILAST-1, ILAST ) A22 = H( ILAST, ILAST ) * * Compute complex Givens rotation on right * (Assume some element of C = (sA - wB) > unfl ) * __ * (sA - wB) ( CZ -SZ ) * ( SZ CZ ) * C11R = S1*A11 - WR*B11 C11I = -WI*B11 C12 = S1*A12 C21 = S1*A21 C22R = S1*A22 - WR*B22 C22I = -WI*B22 * IF( ABS( C11R )+ABS( C11I )+ABS( C12 ).GT.ABS( C21 )+ $ ABS( C22R )+ABS( C22I ) ) THEN T1 = SLAPY3( C12, C11R, C11I ) CZ = C12 / T1 SZR = -C11R / T1 SZI = -C11I / T1 ELSE CZ = SLAPY2( C22R, C22I ) IF( CZ.LE.SAFMIN ) THEN CZ = ZERO SZR = ONE SZI = ZERO ELSE TEMPR = C22R / CZ TEMPI = C22I / CZ T1 = SLAPY2( CZ, C21 ) CZ = CZ / T1 SZR = -C21*TEMPR / T1 SZI = C21*TEMPI / T1 END IF END IF * * Compute Givens rotation on left * * ( CQ SQ ) * ( __ ) A or B * ( -SQ CQ ) * AN = ABS( A11 ) + ABS( A12 ) + ABS( A21 ) + ABS( A22 ) BN = ABS( B11 ) + ABS( B22 ) WABS = ABS( WR ) + ABS( WI ) IF( S1*AN.GT.WABS*BN ) THEN CQ = CZ*B11 SQR = SZR*B22 SQI = -SZI*B22 ELSE A1R = CZ*A11 + SZR*A12 A1I = SZI*A12 A2R = CZ*A21 + SZR*A22 A2I = SZI*A22 CQ = SLAPY2( A1R, A1I ) IF( CQ.LE.SAFMIN ) THEN CQ = ZERO SQR = ONE SQI = ZERO ELSE TEMPR = A1R / CQ TEMPI = A1I / CQ SQR = TEMPR*A2R + TEMPI*A2I SQI = TEMPI*A2R - TEMPR*A2I END IF END IF T1 = SLAPY3( CQ, SQR, SQI ) CQ = CQ / T1 SQR = SQR / T1 SQI = SQI / T1 * * Compute diagonal elements of QBZ * TEMPR = SQR*SZR - SQI*SZI TEMPI = SQR*SZI + SQI*SZR B1R = CQ*CZ*B11 + TEMPR*B22 B1I = TEMPI*B22 B1A = SLAPY2( B1R, B1I ) B2R = CQ*CZ*B22 + TEMPR*B11 B2I = -TEMPI*B11 B2A = SLAPY2( B2R, B2I ) * * Normalize so beta > 0, and Im( alpha1 ) > 0 * BETA( ILAST-1 ) = B1A BETA( ILAST ) = B2A ALPHAR( ILAST-1 ) = ( WR*B1A )*S1INV ALPHAI( ILAST-1 ) = ( WI*B1A )*S1INV ALPHAR( ILAST ) = ( WR*B2A )*S1INV ALPHAI( ILAST ) = -( WI*B2A )*S1INV * * Step 3: Go to next block -- exit if finished. * ILAST = IFIRST - 1 IF( ILAST.LT.ILO ) $ GO TO 380 * * Reset counters * IITER = 0 ESHIFT = ZERO IF( .NOT.ILSCHR ) THEN ILASTM = ILAST IF( IFRSTM.GT.ILAST ) $ IFRSTM = ILO END IF GO TO 350 ELSE * * Usual case: 3x3 or larger block, using Francis implicit * double-shift * * 2 * Eigenvalue equation is w - c w + d = 0, * * -1 2 -1 * so compute 1st column of (A B ) - c A B + d * using the formula in QZIT (from EISPACK) * * We assume that the block is at least 3x3 * AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) / $ ( BSCALE*T( ILAST-1, ILAST-1 ) ) AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) / $ ( BSCALE*T( ILAST-1, ILAST-1 ) ) AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) / $ ( BSCALE*T( ILAST, ILAST ) ) AD22 = ( ASCALE*H( ILAST, ILAST ) ) / $ ( BSCALE*T( ILAST, ILAST ) ) U12 = T( ILAST-1, ILAST ) / T( ILAST, ILAST ) AD11L = ( ASCALE*H( IFIRST, IFIRST ) ) / $ ( BSCALE*T( IFIRST, IFIRST ) ) AD21L = ( ASCALE*H( IFIRST+1, IFIRST ) ) / $ ( BSCALE*T( IFIRST, IFIRST ) ) AD12L = ( ASCALE*H( IFIRST, IFIRST+1 ) ) / $ ( BSCALE*T( IFIRST+1, IFIRST+1 ) ) AD22L = ( ASCALE*H( IFIRST+1, IFIRST+1 ) ) / $ ( BSCALE*T( IFIRST+1, IFIRST+1 ) ) AD32L = ( ASCALE*H( IFIRST+2, IFIRST+1 ) ) / $ ( BSCALE*T( IFIRST+1, IFIRST+1 ) ) U12L = T( IFIRST, IFIRST+1 ) / T( IFIRST+1, IFIRST+1 ) * V( 1 ) = ( AD11-AD11L )*( AD22-AD11L ) - AD12*AD21 + $ AD21*U12*AD11L + ( AD12L-AD11L*U12L )*AD21L V( 2 ) = ( ( AD22L-AD11L )-AD21L*U12L-( AD11-AD11L )- $ ( AD22-AD11L )+AD21*U12 )*AD21L V( 3 ) = AD32L*AD21L * ISTART = IFIRST * CALL SLARFG( 3, V( 1 ), V( 2 ), 1, TAU ) V( 1 ) = ONE * * Sweep * DO 290 J = ISTART, ILAST - 2 * * All but last elements: use 3x3 Householder transforms. * * Zero (j-1)st column of A * IF( J.GT.ISTART ) THEN V( 1 ) = H( J, J-1 ) V( 2 ) = H( J+1, J-1 ) V( 3 ) = H( J+2, J-1 ) * CALL SLARFG( 3, H( J, J-1 ), V( 2 ), 1, TAU ) V( 1 ) = ONE H( J+1, J-1 ) = ZERO H( J+2, J-1 ) = ZERO END IF * DO 230 JC = J, ILASTM TEMP = TAU*( H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )* $ H( J+2, JC ) ) H( J, JC ) = H( J, JC ) - TEMP H( J+1, JC ) = H( J+1, JC ) - TEMP*V( 2 ) H( J+2, JC ) = H( J+2, JC ) - TEMP*V( 3 ) TEMP2 = TAU*( T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )* $ T( J+2, JC ) ) T( J, JC ) = T( J, JC ) - TEMP2 T( J+1, JC ) = T( J+1, JC ) - TEMP2*V( 2 ) T( J+2, JC ) = T( J+2, JC ) - TEMP2*V( 3 ) 230 CONTINUE IF( ILQ ) THEN DO 240 JR = 1, N TEMP = TAU*( Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )* $ Q( JR, J+2 ) ) Q( JR, J ) = Q( JR, J ) - TEMP Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*V( 2 ) Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*V( 3 ) 240 CONTINUE END IF * * Zero j-th column of B (see SLAGBC for details) * * Swap rows to pivot * ILPIVT = .FALSE. TEMP = MAX( ABS( T( J+1, J+1 ) ), ABS( T( J+1, J+2 ) ) ) TEMP2 = MAX( ABS( T( J+2, J+1 ) ), ABS( T( J+2, J+2 ) ) ) IF( MAX( TEMP, TEMP2 ).LT.SAFMIN ) THEN SCALE = ZERO U1 = ONE U2 = ZERO GO TO 250 ELSE IF( TEMP.GE.TEMP2 ) THEN W11 = T( J+1, J+1 ) W21 = T( J+2, J+1 ) W12 = T( J+1, J+2 ) W22 = T( J+2, J+2 ) U1 = T( J+1, J ) U2 = T( J+2, J ) ELSE W21 = T( J+1, J+1 ) W11 = T( J+2, J+1 ) W22 = T( J+1, J+2 ) W12 = T( J+2, J+2 ) U2 = T( J+1, J ) U1 = T( J+2, J ) END IF * * Swap columns if nec. * IF( ABS( W12 ).GT.ABS( W11 ) ) THEN ILPIVT = .TRUE. TEMP = W12 TEMP2 = W22 W12 = W11 W22 = W21 W11 = TEMP W21 = TEMP2 END IF * * LU-factor * TEMP = W21 / W11 U2 = U2 - TEMP*U1 W22 = W22 - TEMP*W12 W21 = ZERO * * Compute SCALE * SCALE = ONE IF( ABS( W22 ).LT.SAFMIN ) THEN SCALE = ZERO U2 = ONE U1 = -W12 / W11 GO TO 250 END IF IF( ABS( W22 ).LT.ABS( U2 ) ) $ SCALE = ABS( W22 / U2 ) IF( ABS( W11 ).LT.ABS( U1 ) ) $ SCALE = MIN( SCALE, ABS( W11 / U1 ) ) * * Solve * U2 = ( SCALE*U2 ) / W22 U1 = ( SCALE*U1-W12*U2 ) / W11 * 250 CONTINUE IF( ILPIVT ) THEN TEMP = U2 U2 = U1 U1 = TEMP END IF * * Compute Householder Vector * T1 = SQRT( SCALE**2+U1**2+U2**2 ) TAU = ONE + SCALE / T1 VS = -ONE / ( SCALE+T1 ) V( 1 ) = ONE V( 2 ) = VS*U1 V( 3 ) = VS*U2 * * Apply transformations from the right. * DO 260 JR = IFRSTM, MIN( J+3, ILAST ) TEMP = TAU*( H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )* $ H( JR, J+2 ) ) H( JR, J ) = H( JR, J ) - TEMP H( JR, J+1 ) = H( JR, J+1 ) - TEMP*V( 2 ) H( JR, J+2 ) = H( JR, J+2 ) - TEMP*V( 3 ) 260 CONTINUE DO 270 JR = IFRSTM, J + 2 TEMP = TAU*( T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )* $ T( JR, J+2 ) ) T( JR, J ) = T( JR, J ) - TEMP T( JR, J+1 ) = T( JR, J+1 ) - TEMP*V( 2 ) T( JR, J+2 ) = T( JR, J+2 ) - TEMP*V( 3 ) 270 CONTINUE IF( ILZ ) THEN DO 280 JR = 1, N TEMP = TAU*( Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )* $ Z( JR, J+2 ) ) Z( JR, J ) = Z( JR, J ) - TEMP Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*V( 2 ) Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*V( 3 ) 280 CONTINUE END IF T( J+1, J ) = ZERO T( J+2, J ) = ZERO 290 CONTINUE * * Last elements: Use Givens rotations * * Rotations from the left * J = ILAST - 1 TEMP = H( J, J-1 ) CALL SLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) ) H( J+1, J-1 ) = ZERO * DO 300 JC = J, ILASTM TEMP = C*H( J, JC ) + S*H( J+1, JC ) H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC ) H( J, JC ) = TEMP TEMP2 = C*T( J, JC ) + S*T( J+1, JC ) T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC ) T( J, JC ) = TEMP2 300 CONTINUE IF( ILQ ) THEN DO 310 JR = 1, N TEMP = C*Q( JR, J ) + S*Q( JR, J+1 ) Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 ) Q( JR, J ) = TEMP 310 CONTINUE END IF * * Rotations from the right. * TEMP = T( J+1, J+1 ) CALL SLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) ) T( J+1, J ) = ZERO * DO 320 JR = IFRSTM, ILAST TEMP = C*H( JR, J+1 ) + S*H( JR, J ) H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J ) H( JR, J+1 ) = TEMP 320 CONTINUE DO 330 JR = IFRSTM, ILAST - 1 TEMP = C*T( JR, J+1 ) + S*T( JR, J ) T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J ) T( JR, J+1 ) = TEMP 330 CONTINUE IF( ILZ ) THEN DO 340 JR = 1, N TEMP = C*Z( JR, J+1 ) + S*Z( JR, J ) Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J ) Z( JR, J+1 ) = TEMP 340 CONTINUE END IF * * End of Double-Shift code * END IF * GO TO 350 * * End of iteration loop * 350 CONTINUE 360 CONTINUE * * Drop-through = non-convergence * INFO = ILAST GO TO 420 * * Successful completion of all QZ steps * 380 CONTINUE * * Set Eigenvalues 1:ILO-1 * DO 410 J = 1, ILO - 1 IF( T( J, J ).LT.ZERO ) THEN IF( ILSCHR ) THEN DO 390 JR = 1, J H( JR, J ) = -H( JR, J ) T( JR, J ) = -T( JR, J ) 390 CONTINUE ELSE H( J, J ) = -H( J, J ) T( J, J ) = -T( J, J ) END IF IF( ILZ ) THEN DO 400 JR = 1, N Z( JR, J ) = -Z( JR, J ) 400 CONTINUE END IF END IF ALPHAR( J ) = H( J, J ) ALPHAI( J ) = ZERO BETA( J ) = T( J, J ) 410 CONTINUE * * Normal Termination * INFO = 0 * * Exit (other than argument error) -- return optimal workspace size * 420 CONTINUE WORK( 1 ) = REAL( N ) RETURN * * End of SHGEQZ * END |