1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
SUBROUTINE SLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
$ INCX, BETA, Y, INCY ) * * -- LAPACK routine (version 3.3.1) -- * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- * -- Jason Riedy of Univ. of California Berkeley. -- * -- June 2010 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley and NAG Ltd. -- * IMPLICIT NONE * .. * .. Scalar Arguments .. REAL ALPHA, BETA INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS * .. * .. Array Arguments .. REAL AB( LDAB, * ), X( * ), Y( * ) * .. * * Purpose * ======= * * SLA_GBAMV performs one of the matrix-vector operations * * y := alpha*abs(A)*abs(x) + beta*abs(y), * or y := alpha*abs(A)**T*abs(x) + beta*abs(y), * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * This function is primarily used in calculating error bounds. * To protect against underflow during evaluation, components in * the resulting vector are perturbed away from zero by (N+1) * times the underflow threshold. To prevent unnecessarily large * errors for block-structure embedded in general matrices, * "symbolically" zero components are not perturbed. A zero * entry is considered "symbolic" if all multiplications involved * in computing that entry have at least one zero multiplicand. * * Arguments * ========== * * TRANS (input) INTEGER * On entry, TRANS specifies the operation to be performed as * follows: * * BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y) * BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) * BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) * * Unchanged on exit. * * M (input) INTEGER * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N (input) INTEGER * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * KL (input) INTEGER * The number of subdiagonals within the band of A. KL >= 0. * * KU (input) INTEGER * The number of superdiagonals within the band of A. KU >= 0. * * ALPHA (input) REAL * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * AB (input) REAL array of DIMENSION ( LDAB, n ) * Before entry, the leading m by n part of the array AB must * contain the matrix of coefficients. * Unchanged on exit. * * LDAB (input) INTEGER * On entry, LDA specifies the first dimension of AB as declared * in the calling (sub) program. LDAB must be at least * max( 1, m ). * Unchanged on exit. * * X (input) REAL array, dimension * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX (input) INTEGER * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA (input) REAL * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y (input/output) REAL array, dimension * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY (input) INTEGER * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * ===================================================================== * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL SYMB_ZERO REAL TEMP, SAFE1 INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE * .. * .. External Subroutines .. EXTERNAL XERBLA, SLAMCH REAL SLAMCH * .. * .. External Functions .. EXTERNAL ILATRANS INTEGER ILATRANS * .. * .. Intrinsic Functions .. INTRINSIC MAX, ABS, SIGN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) ) $ .OR. ( TRANS.EQ.ILATRANS( 'T' ) ) $ .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN INFO = 1 ELSE IF( M.LT.0 )THEN INFO = 2 ELSE IF( N.LT.0 )THEN INFO = 3 ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN INFO = 4 ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN INFO = 5 ELSE IF( LDAB.LT.KL+KU+1 )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 ELSE IF( INCY.EQ.0 )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SLA_GBAMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) $ RETURN * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF( TRANS.EQ.ILATRANS( 'N' ) )THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( LENX - 1 )*INCX END IF IF( INCY.GT.0 )THEN KY = 1 ELSE KY = 1 - ( LENY - 1 )*INCY END IF * * Set SAFE1 essentially to be the underflow threshold times the * number of additions in each row. * SAFE1 = SLAMCH( 'Safe minimum' ) SAFE1 = (N+1)*SAFE1 * * Form y := alpha*abs(A)*abs(x) + beta*abs(y). * * The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to * the inexact flag. Still doesn't help change the iteration order * to per-column. * KD = KU + 1 KE = KL + 1 IY = KY IF ( INCX.EQ.1 ) THEN IF( TRANS.EQ.ILATRANS( 'N' ) )THEN DO I = 1, LENY IF ( BETA .EQ. ZERO ) THEN SYMB_ZERO = .TRUE. Y( IY ) = 0.0 ELSE IF ( Y( IY ) .EQ. ZERO ) THEN SYMB_ZERO = .TRUE. ELSE SYMB_ZERO = .FALSE. Y( IY ) = BETA * ABS( Y( IY ) ) END IF IF ( ALPHA .NE. ZERO ) THEN DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX ) TEMP = ABS( AB( KD+I-J, J ) ) SYMB_ZERO = SYMB_ZERO .AND. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP END DO END IF IF ( .NOT.SYMB_ZERO ) $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) ) IY = IY + INCY END DO ELSE DO I = 1, LENY IF ( BETA .EQ. ZERO ) THEN SYMB_ZERO = .TRUE. Y( IY ) = 0.0 ELSE IF ( Y( IY ) .EQ. ZERO ) THEN SYMB_ZERO = .TRUE. ELSE SYMB_ZERO = .FALSE. Y( IY ) = BETA * ABS( Y( IY ) ) END IF IF ( ALPHA .NE. ZERO ) THEN DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX ) TEMP = ABS( AB( KE-I+J, I ) ) SYMB_ZERO = SYMB_ZERO .AND. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP END DO END IF IF ( .NOT.SYMB_ZERO ) $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) ) IY = IY + INCY END DO END IF ELSE IF( TRANS.EQ.ILATRANS( 'N' ) )THEN DO I = 1, LENY IF ( BETA .EQ. ZERO ) THEN SYMB_ZERO = .TRUE. Y( IY ) = 0.0 ELSE IF ( Y( IY ) .EQ. ZERO ) THEN SYMB_ZERO = .TRUE. ELSE SYMB_ZERO = .FALSE. Y( IY ) = BETA * ABS( Y( IY ) ) END IF IF ( ALPHA .NE. ZERO ) THEN JX = KX DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX ) TEMP = ABS( AB( KD+I-J, J ) ) SYMB_ZERO = SYMB_ZERO .AND. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP JX = JX + INCX END DO END IF IF ( .NOT.SYMB_ZERO ) $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) ) IY = IY + INCY END DO ELSE DO I = 1, LENY IF ( BETA .EQ. ZERO ) THEN SYMB_ZERO = .TRUE. Y( IY ) = 0.0 ELSE IF ( Y( IY ) .EQ. ZERO ) THEN SYMB_ZERO = .TRUE. ELSE SYMB_ZERO = .FALSE. Y( IY ) = BETA * ABS( Y( IY ) ) END IF IF ( ALPHA .NE. ZERO ) THEN JX = KX DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX ) TEMP = ABS( AB( KE-I+J, I ) ) SYMB_ZERO = SYMB_ZERO .AND. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO ) Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP JX = JX + INCX END DO END IF IF ( .NOT.SYMB_ZERO ) $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) ) IY = IY + INCY END DO END IF END IF * RETURN * * End of SLA_GBAMV * END |