SLAED5
   November 2006
Purpose
This subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix
diag( D ) + RHO * Z * transpose(Z) .
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
modification of a 2-by-2 diagonal matrix
diag( D ) + RHO * Z * transpose(Z) .
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Arguments
| I | 
 
(input) INTEGER
 
The index of the eigenvalue to be computed.  I = 1 or I = 2. 
 | 
| D | 
 
(input) REAL array, dimension (2)
 
The original eigenvalues.  We assume D(1) < D(2). 
 | 
| Z | 
 
(input) REAL array, dimension (2)
 
The components of the updating vector. 
 | 
| DELTA | 
 
(output) REAL array, dimension (2)
 
The vector DELTA contains the information necessary 
to construct the eigenvectors.  | 
| RHO | 
 
(input) REAL
 
The scalar in the symmetric updating formula. 
 | 
| DLAM | 
 
(output) REAL
 
The computed lambda_I, the I-th updated eigenvalue. 
 | 
Further Details
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA