SLAGS2
Purpose
SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then
U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x )
and
V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 )
( 0 B3 ) ( x x )
or if ( .NOT.UPPER ) then
U**T *A*Q = U**T *( A1 0 )*Q = ( x x )
( A2 A3 ) ( 0 x )
and
V**T*B*Q = V**T*( B1 0 )*Q = ( x x )
( B2 B3 ) ( 0 x )
The rows of the transformed A and B are parallel, where
U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ )
( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ )
Z**T denotes the transpose of Z.
that if ( UPPER ) then
U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x )
and
V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 )
( 0 B3 ) ( x x )
or if ( .NOT.UPPER ) then
U**T *A*Q = U**T *( A1 0 )*Q = ( x x )
( A2 A3 ) ( 0 x )
and
V**T*B*Q = V**T*( B1 0 )*Q = ( x x )
( B2 B3 ) ( 0 x )
The rows of the transformed A and B are parallel, where
U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ )
( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ )
Z**T denotes the transpose of Z.
Arguments
| UPPER |
(input) LOGICAL
= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular. |
| A1 |
(input) REAL
|
| A2 |
(input) REAL
|
| A3 |
(input) REAL
On entry, A1, A2 and A3 are elements of the input 2-by-2
upper (lower) triangular matrix A. |
| B1 |
(input) REAL
|
| B2 |
(input) REAL
|
| B3 |
(input) REAL
On entry, B1, B2 and B3 are elements of the input 2-by-2
upper (lower) triangular matrix B. |
| CSU |
(output) REAL
|
| SNU |
(output) REAL
The desired orthogonal matrix U.
|
| CSV |
(output) REAL
|
| SNV |
(output) REAL
The desired orthogonal matrix V.
|
| CSQ |
(output) REAL
|
| SNQ |
(output) REAL
The desired orthogonal matrix Q.
|