SLANSP
   November 2006
Purpose
SLANSP  returns the value of the one norm,  or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A, supplied in packed form.
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A, supplied in packed form.
Description
SLANSP returns the value
SLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
SLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
Arguments
| NORM | 
 
(input) CHARACTER*1
 
Specifies the value to be returned in SLANSP as described 
above.  | 
| UPLO | 
 
(input) CHARACTER*1
 
Specifies whether the upper or lower triangular part of the 
symmetric matrix A is supplied. = 'U': Upper triangular part of A is supplied = 'L': Lower triangular part of A is supplied  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0.  When N = 0, SLANSP is 
set to zero.  | 
| AP | 
 
(input) REAL array, dimension (N*(N+1)/2)
 
The upper or lower triangle of the symmetric matrix A, packed 
columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.  | 
| WORK | 
 
(workspace) REAL array, dimension (MAX(1,LWORK)),
 
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, 
WORK is not referenced.  |