1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
SUBROUTINE SLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
$ IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, $ LDT, NV, WV, LDWV, WORK, LWORK ) * * -- LAPACK auxiliary routine (version 3.2.1) -- * Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. * -- April 2009 -- * * .. Scalar Arguments .. INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, $ LDZ, LWORK, N, ND, NH, NS, NV, NW LOGICAL WANTT, WANTZ * .. * .. Array Arguments .. REAL H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), $ V( LDV, * ), WORK( * ), WV( LDWV, * ), $ Z( LDZ, * ) * .. * * ****************************************************************** * Aggressive early deflation: * * This subroutine accepts as input an upper Hessenberg matrix * H and performs an orthogonal similarity transformation * designed to detect and deflate fully converged eigenvalues from * a trailing principal submatrix. On output H has been over- * written by a new Hessenberg matrix that is a perturbation of * an orthogonal similarity transformation of H. It is to be * hoped that the final version of H has many zero subdiagonal * entries. * * ****************************************************************** * WANTT (input) LOGICAL * If .TRUE., then the Hessenberg matrix H is fully updated * so that the quasi-triangular Schur factor may be * computed (in cooperation with the calling subroutine). * If .FALSE., then only enough of H is updated to preserve * the eigenvalues. * * WANTZ (input) LOGICAL * If .TRUE., then the orthogonal matrix Z is updated so * so that the orthogonal Schur factor may be computed * (in cooperation with the calling subroutine). * If .FALSE., then Z is not referenced. * * N (input) INTEGER * The order of the matrix H and (if WANTZ is .TRUE.) the * order of the orthogonal matrix Z. * * KTOP (input) INTEGER * It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. * KBOT and KTOP together determine an isolated block * along the diagonal of the Hessenberg matrix. * * KBOT (input) INTEGER * It is assumed without a check that either * KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together * determine an isolated block along the diagonal of the * Hessenberg matrix. * * NW (input) INTEGER * Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1). * * H (input/output) REAL array, dimension (LDH,N) * On input the initial N-by-N section of H stores the * Hessenberg matrix undergoing aggressive early deflation. * On output H has been transformed by an orthogonal * similarity transformation, perturbed, and the returned * to Hessenberg form that (it is to be hoped) has some * zero subdiagonal entries. * * LDH (input) integer * Leading dimension of H just as declared in the calling * subroutine. N .LE. LDH * * ILOZ (input) INTEGER * IHIZ (input) INTEGER * Specify the rows of Z to which transformations must be * applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. * * Z (input/output) REAL array, dimension (LDZ,N) * IF WANTZ is .TRUE., then on output, the orthogonal * similarity transformation mentioned above has been * accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. * If WANTZ is .FALSE., then Z is unreferenced. * * LDZ (input) integer * The leading dimension of Z just as declared in the * calling subroutine. 1 .LE. LDZ. * * NS (output) integer * The number of unconverged (ie approximate) eigenvalues * returned in SR and SI that may be used as shifts by the * calling subroutine. * * ND (output) integer * The number of converged eigenvalues uncovered by this * subroutine. * * SR (output) REAL array, dimension KBOT * SI (output) REAL array, dimension KBOT * On output, the real and imaginary parts of approximate * eigenvalues that may be used for shifts are stored in * SR(KBOT-ND-NS+1) through SR(KBOT-ND) and * SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. * The real and imaginary parts of converged eigenvalues * are stored in SR(KBOT-ND+1) through SR(KBOT) and * SI(KBOT-ND+1) through SI(KBOT), respectively. * * V (workspace) REAL array, dimension (LDV,NW) * An NW-by-NW work array. * * LDV (input) integer scalar * The leading dimension of V just as declared in the * calling subroutine. NW .LE. LDV * * NH (input) integer scalar * The number of columns of T. NH.GE.NW. * * T (workspace) REAL array, dimension (LDT,NW) * * LDT (input) integer * The leading dimension of T just as declared in the * calling subroutine. NW .LE. LDT * * NV (input) integer * The number of rows of work array WV available for * workspace. NV.GE.NW. * * WV (workspace) REAL array, dimension (LDWV,NW) * * LDWV (input) integer * The leading dimension of W just as declared in the * calling subroutine. NW .LE. LDV * * WORK (workspace) REAL array, dimension LWORK. * On exit, WORK(1) is set to an estimate of the optimal value * of LWORK for the given values of N, NW, KTOP and KBOT. * * LWORK (input) integer * The dimension of the work array WORK. LWORK = 2*NW * suffices, but greater efficiency may result from larger * values of LWORK. * * If LWORK = -1, then a workspace query is assumed; SLAQR3 * only estimates the optimal workspace size for the given * values of N, NW, KTOP and KBOT. The estimate is returned * in WORK(1). No error message related to LWORK is issued * by XERBLA. Neither H nor Z are accessed. * * ================================================================ * Based on contributions by * Karen Braman and Ralph Byers, Department of Mathematics, * University of Kansas, USA * * ================================================================ * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0e0, ONE = 1.0e0 ) * .. * .. Local Scalars .. REAL AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S, $ SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP INTEGER I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL, $ KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3, $ LWKOPT, NMIN LOGICAL BULGE, SORTED * .. * .. External Functions .. REAL SLAMCH INTEGER ILAENV EXTERNAL SLAMCH, ILAENV * .. * .. External Subroutines .. EXTERNAL SCOPY, SGEHRD, SGEMM, SLABAD, SLACPY, SLAHQR, $ SLANV2, SLAQR4, SLARF, SLARFG, SLASET, SORMHR, $ STREXC * .. * .. Intrinsic Functions .. INTRINSIC ABS, INT, MAX, MIN, REAL, SQRT * .. * .. Executable Statements .. * * ==== Estimate optimal workspace. ==== * JW = MIN( NW, KBOT-KTOP+1 ) IF( JW.LE.2 ) THEN LWKOPT = 1 ELSE * * ==== Workspace query call to SGEHRD ==== * CALL SGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO ) LWK1 = INT( WORK( 1 ) ) * * ==== Workspace query call to SORMHR ==== * CALL SORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV, $ WORK, -1, INFO ) LWK2 = INT( WORK( 1 ) ) * * ==== Workspace query call to SLAQR4 ==== * CALL SLAQR4( .true., .true., JW, 1, JW, T, LDT, SR, SI, 1, JW, $ V, LDV, WORK, -1, INFQR ) LWK3 = INT( WORK( 1 ) ) * * ==== Optimal workspace ==== * LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 ) END IF * * ==== Quick return in case of workspace query. ==== * IF( LWORK.EQ.-1 ) THEN WORK( 1 ) = REAL( LWKOPT ) RETURN END IF * * ==== Nothing to do ... * ... for an empty active block ... ==== NS = 0 ND = 0 WORK( 1 ) = ONE IF( KTOP.GT.KBOT ) $ RETURN * ... nor for an empty deflation window. ==== IF( NW.LT.1 ) $ RETURN * * ==== Machine constants ==== * SAFMIN = SLAMCH( 'SAFE MINIMUM' ) SAFMAX = ONE / SAFMIN CALL SLABAD( SAFMIN, SAFMAX ) ULP = SLAMCH( 'PRECISION' ) SMLNUM = SAFMIN*( REAL( N ) / ULP ) * * ==== Setup deflation window ==== * JW = MIN( NW, KBOT-KTOP+1 ) KWTOP = KBOT - JW + 1 IF( KWTOP.EQ.KTOP ) THEN S = ZERO ELSE S = H( KWTOP, KWTOP-1 ) END IF * IF( KBOT.EQ.KWTOP ) THEN * * ==== 1-by-1 deflation window: not much to do ==== * SR( KWTOP ) = H( KWTOP, KWTOP ) SI( KWTOP ) = ZERO NS = 1 ND = 0 IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) ) $ THEN NS = 0 ND = 1 IF( KWTOP.GT.KTOP ) $ H( KWTOP, KWTOP-1 ) = ZERO END IF WORK( 1 ) = ONE RETURN END IF * * ==== Convert to spike-triangular form. (In case of a * . rare QR failure, this routine continues to do * . aggressive early deflation using that part of * . the deflation window that converged using INFQR * . here and there to keep track.) ==== * CALL SLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT ) CALL SCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 ) * CALL SLASET( 'A', JW, JW, ZERO, ONE, V, LDV ) NMIN = ILAENV( 12, 'SLAQR3', 'SV', JW, 1, JW, LWORK ) IF( JW.GT.NMIN ) THEN CALL SLAQR4( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ), $ SI( KWTOP ), 1, JW, V, LDV, WORK, LWORK, INFQR ) ELSE CALL SLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ), $ SI( KWTOP ), 1, JW, V, LDV, INFQR ) END IF * * ==== STREXC needs a clean margin near the diagonal ==== * DO 10 J = 1, JW - 3 T( J+2, J ) = ZERO T( J+3, J ) = ZERO 10 CONTINUE IF( JW.GT.2 ) $ T( JW, JW-2 ) = ZERO * * ==== Deflation detection loop ==== * NS = JW ILST = INFQR + 1 20 CONTINUE IF( ILST.LE.NS ) THEN IF( NS.EQ.1 ) THEN BULGE = .FALSE. ELSE BULGE = T( NS, NS-1 ).NE.ZERO END IF * * ==== Small spike tip test for deflation ==== * IF( .NOT.BULGE ) THEN * * ==== Real eigenvalue ==== * FOO = ABS( T( NS, NS ) ) IF( FOO.EQ.ZERO ) $ FOO = ABS( S ) IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN * * ==== Deflatable ==== * NS = NS - 1 ELSE * * ==== Undeflatable. Move it up out of the way. * . (STREXC can not fail in this case.) ==== * IFST = NS CALL STREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK, $ INFO ) ILST = ILST + 1 END IF ELSE * * ==== Complex conjugate pair ==== * FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )* $ SQRT( ABS( T( NS-1, NS ) ) ) IF( FOO.EQ.ZERO ) $ FOO = ABS( S ) IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE. $ MAX( SMLNUM, ULP*FOO ) ) THEN * * ==== Deflatable ==== * NS = NS - 2 ELSE * * ==== Undeflatable. Move them up out of the way. * . Fortunately, STREXC does the right thing with * . ILST in case of a rare exchange failure. ==== * IFST = NS CALL STREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK, $ INFO ) ILST = ILST + 2 END IF END IF * * ==== End deflation detection loop ==== * GO TO 20 END IF * * ==== Return to Hessenberg form ==== * IF( NS.EQ.0 ) $ S = ZERO * IF( NS.LT.JW ) THEN * * ==== sorting diagonal blocks of T improves accuracy for * . graded matrices. Bubble sort deals well with * . exchange failures. ==== * SORTED = .false. I = NS + 1 30 CONTINUE IF( SORTED ) $ GO TO 50 SORTED = .true. * KEND = I - 1 I = INFQR + 1 IF( I.EQ.NS ) THEN K = I + 1 ELSE IF( T( I+1, I ).EQ.ZERO ) THEN K = I + 1 ELSE K = I + 2 END IF 40 CONTINUE IF( K.LE.KEND ) THEN IF( K.EQ.I+1 ) THEN EVI = ABS( T( I, I ) ) ELSE EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )* $ SQRT( ABS( T( I, I+1 ) ) ) END IF * IF( K.EQ.KEND ) THEN EVK = ABS( T( K, K ) ) ELSE IF( T( K+1, K ).EQ.ZERO ) THEN EVK = ABS( T( K, K ) ) ELSE EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )* $ SQRT( ABS( T( K, K+1 ) ) ) END IF * IF( EVI.GE.EVK ) THEN I = K ELSE SORTED = .false. IFST = I ILST = K CALL STREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK, $ INFO ) IF( INFO.EQ.0 ) THEN I = ILST ELSE I = K END IF END IF IF( I.EQ.KEND ) THEN K = I + 1 ELSE IF( T( I+1, I ).EQ.ZERO ) THEN K = I + 1 ELSE K = I + 2 END IF GO TO 40 END IF GO TO 30 50 CONTINUE END IF * * ==== Restore shift/eigenvalue array from T ==== * I = JW 60 CONTINUE IF( I.GE.INFQR+1 ) THEN IF( I.EQ.INFQR+1 ) THEN SR( KWTOP+I-1 ) = T( I, I ) SI( KWTOP+I-1 ) = ZERO I = I - 1 ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN SR( KWTOP+I-1 ) = T( I, I ) SI( KWTOP+I-1 ) = ZERO I = I - 1 ELSE AA = T( I-1, I-1 ) CC = T( I, I-1 ) BB = T( I-1, I ) DD = T( I, I ) CALL SLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ), $ SI( KWTOP+I-2 ), SR( KWTOP+I-1 ), $ SI( KWTOP+I-1 ), CS, SN ) I = I - 2 END IF GO TO 60 END IF * IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN IF( NS.GT.1 .AND. S.NE.ZERO ) THEN * * ==== Reflect spike back into lower triangle ==== * CALL SCOPY( NS, V, LDV, WORK, 1 ) BETA = WORK( 1 ) CALL SLARFG( NS, BETA, WORK( 2 ), 1, TAU ) WORK( 1 ) = ONE * CALL SLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT ) * CALL SLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT, $ WORK( JW+1 ) ) CALL SLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT, $ WORK( JW+1 ) ) CALL SLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV, $ WORK( JW+1 ) ) * CALL SGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ), $ LWORK-JW, INFO ) END IF * * ==== Copy updated reduced window into place ==== * IF( KWTOP.GT.1 ) $ H( KWTOP, KWTOP-1 ) = S*V( 1, 1 ) CALL SLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH ) CALL SCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ), $ LDH+1 ) * * ==== Accumulate orthogonal matrix in order update * . H and Z, if requested. ==== * IF( NS.GT.1 .AND. S.NE.ZERO ) $ CALL SORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV, $ WORK( JW+1 ), LWORK-JW, INFO ) * * ==== Update vertical slab in H ==== * IF( WANTT ) THEN LTOP = 1 ELSE LTOP = KTOP END IF DO 70 KROW = LTOP, KWTOP - 1, NV KLN = MIN( NV, KWTOP-KROW ) CALL SGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ), $ LDH, V, LDV, ZERO, WV, LDWV ) CALL SLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH ) 70 CONTINUE * * ==== Update horizontal slab in H ==== * IF( WANTT ) THEN DO 80 KCOL = KBOT + 1, N, NH KLN = MIN( NH, N-KCOL+1 ) CALL SGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV, $ H( KWTOP, KCOL ), LDH, ZERO, T, LDT ) CALL SLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ), $ LDH ) 80 CONTINUE END IF * * ==== Update vertical slab in Z ==== * IF( WANTZ ) THEN DO 90 KROW = ILOZ, IHIZ, NV KLN = MIN( NV, IHIZ-KROW+1 ) CALL SGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ), $ LDZ, V, LDV, ZERO, WV, LDWV ) CALL SLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ), $ LDZ ) 90 CONTINUE END IF END IF * * ==== Return the number of deflations ... ==== * ND = JW - NS * * ==== ... and the number of shifts. (Subtracting * . INFQR from the spike length takes care * . of the case of a rare QR failure while * . calculating eigenvalues of the deflation * . window.) ==== * NS = NS - INFQR * * ==== Return optimal workspace. ==== * WORK( 1 ) = REAL( LWKOPT ) * * ==== End of SLAQR3 ==== * END |