SLARFB
Purpose
SLARFB applies a real block reflector H or its transpose H**T to a
real m by n matrix C, from either the left or the right.
real m by n matrix C, from either the left or the right.
Arguments
| SIDE | 
 
(input) CHARACTER*1
 
= 'L': apply H or H**T from the Left 
= 'R': apply H or H**T from the Right  | 
| TRANS | 
 
(input) CHARACTER*1
 
= 'N': apply H (No transpose) 
= 'T': apply H**T (Transpose)  | 
| DIRECT | 
 
(input) CHARACTER*1
 
Indicates how H is formed from a product of elementary 
reflectors = 'F': H = H(1) H(2) . . . H(k) (Forward) = 'B': H = H(k) . . . H(2) H(1) (Backward)  | 
| STOREV | 
 
(input) CHARACTER*1
 
Indicates how the vectors which define the elementary 
reflectors are stored: = 'C': Columnwise = 'R': Rowwise  | 
| M | 
 
(input) INTEGER
 
The number of rows of the matrix C. 
 | 
| N | 
 
(input) INTEGER
 
The number of columns of the matrix C. 
 | 
| K | 
 
(input) INTEGER
 
The order of the matrix T (= the number of elementary 
reflectors whose product defines the block reflector).  | 
| V | 
 
(input) REAL array, dimension
 
                      (LDV,K) if STOREV = 'C' 
(LDV,M) if STOREV = 'R' and SIDE = 'L' (LDV,N) if STOREV = 'R' and SIDE = 'R' The matrix V. See Further Details.  | 
| LDV | 
 
(input) INTEGER
 
The leading dimension of the array V. 
If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); if STOREV = 'R', LDV >= K.  | 
| T | 
 
(input) REAL array, dimension (LDT,K)
 
The triangular k by k matrix T in the representation of the 
block reflector.  | 
| LDT | 
 
(input) INTEGER
 
The leading dimension of the array T. LDT >= K. 
 | 
| C | 
 
(input/output) REAL array, dimension (LDC,N)
 
On entry, the m by n matrix C. 
On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.  | 
| LDC | 
 
(input) INTEGER
 
The leading dimension of the array C. LDC >= max(1,M). 
 | 
| WORK | 
 
(workspace) REAL array, dimension (LDWORK,K)
 
 | 
| LDWORK | 
 
(input) INTEGER
 
The leading dimension of the array WORK. 
If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M).  | 
Further Details
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )