1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
SUBROUTINE SLARFGP( N, ALPHA, X, INCX, TAU )
* * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INCX, N REAL ALPHA, TAU * .. * .. Array Arguments .. REAL X( * ) * .. * * Purpose * ======= * * SLARFGP generates a real elementary reflector H of order n, such * that * * H * ( alpha ) = ( beta ), H**T * H = I. * ( x ) ( 0 ) * * where alpha and beta are scalars, beta is non-negative, and x is * an (n-1)-element real vector. H is represented in the form * * H = I - tau * ( 1 ) * ( 1 v**T ) , * ( v ) * * where tau is a real scalar and v is a real (n-1)-element * vector. * * If the elements of x are all zero, then tau = 0 and H is taken to be * the unit matrix. * * Arguments * ========= * * N (input) INTEGER * The order of the elementary reflector. * * ALPHA (input/output) REAL * On entry, the value alpha. * On exit, it is overwritten with the value beta. * * X (input/output) REAL array, dimension * (1+(N-2)*abs(INCX)) * On entry, the vector x. * On exit, it is overwritten with the vector v. * * INCX (input) INTEGER * The increment between elements of X. INCX > 0. * * TAU (output) REAL * The value tau. * * ===================================================================== * * .. Parameters .. REAL TWO, ONE, ZERO PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER J, KNT REAL BETA, BIGNUM, SAVEALPHA, SMLNUM, XNORM * .. * .. External Functions .. REAL SLAMCH, SLAPY2, SNRM2 EXTERNAL SLAMCH, SLAPY2, SNRM2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, SIGN * .. * .. External Subroutines .. EXTERNAL SSCAL * .. * .. Executable Statements .. * IF( N.LE.0 ) THEN TAU = ZERO RETURN END IF * XNORM = SNRM2( N-1, X, INCX ) * IF( XNORM.EQ.ZERO ) THEN * * H = [+/-1, 0; I], sign chosen so ALPHA >= 0. * IF( ALPHA.GE.ZERO ) THEN * When TAU.eq.ZERO, the vector is special-cased to be * all zeros in the application routines. We do not need * to clear it. TAU = ZERO ELSE * However, the application routines rely on explicit * zero checks when TAU.ne.ZERO, and we must clear X. TAU = TWO DO J = 1, N-1 X( 1 + (J-1)*INCX ) = 0 END DO ALPHA = -ALPHA END IF ELSE * * general case * BETA = SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'E' ) KNT = 0 IF( ABS( BETA ).LT.SMLNUM ) THEN * * XNORM, BETA may be inaccurate; scale X and recompute them * BIGNUM = ONE / SMLNUM 10 CONTINUE KNT = KNT + 1 CALL SSCAL( N-1, BIGNUM, X, INCX ) BETA = BETA*BIGNUM ALPHA = ALPHA*BIGNUM IF( ABS( BETA ).LT.SMLNUM ) $ GO TO 10 * * New BETA is at most 1, at least SMLNUM * XNORM = SNRM2( N-1, X, INCX ) BETA = SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) END IF SAVEALPHA = ALPHA ALPHA = ALPHA + BETA IF( BETA.LT.ZERO ) THEN BETA = -BETA TAU = -ALPHA / BETA ELSE ALPHA = XNORM * (XNORM/ALPHA) TAU = ALPHA / BETA ALPHA = -ALPHA END IF * IF ( ABS(TAU).LE.SMLNUM ) THEN * * In the case where the computed TAU ends up being a denormalized number, * it loses relative accuracy. This is a BIG problem. Solution: flush TAU * to ZERO. This explains the next IF statement. * * (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.) * (Thanks Pat. Thanks MathWorks.) * IF( SAVEALPHA.GE.ZERO ) THEN TAU = ZERO ELSE TAU = TWO DO J = 1, N-1 X( 1 + (J-1)*INCX ) = 0 END DO BETA = -SAVEALPHA END IF * ELSE * * This is the general case. * CALL SSCAL( N-1, ONE / ALPHA, X, INCX ) * END IF * * If BETA is subnormal, it may lose relative accuracy * DO 20 J = 1, KNT BETA = BETA*SMLNUM 20 CONTINUE ALPHA = BETA END IF * RETURN * * End of SLARFGP * END |