SLARFX
Purpose
SLARFX applies a real elementary reflector H to a real m by n
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v**T
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v**T
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.
Arguments
SIDE |
(input) CHARACTER*1
= 'L': form H * C
= 'R': form C * H |
M |
(input) INTEGER
The number of rows of the matrix C.
|
N |
(input) INTEGER
The number of columns of the matrix C.
|
V |
(input) REAL array, dimension (M) if SIDE = 'L'
or (N) if SIDE = 'R'
The vector v in the representation of H. |
TAU |
(input) REAL
The value tau in the representation of H.
|
C |
(input/output) REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L', or C * H if SIDE = 'R'. |
LDC |
(input) INTEGER
The leading dimension of the array C. LDA >= (1,M).
|
WORK |
(workspace) REAL array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R' WORK is not referenced if H has order < 11. |