1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
SUBROUTINE SLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER SIDE INTEGER INCV, L, LDC, M, N REAL TAU * .. * .. Array Arguments .. REAL C( LDC, * ), V( * ), WORK( * ) * .. * * Purpose * ======= * * SLARZ applies a real elementary reflector H to a real M-by-N * matrix C, from either the left or the right. H is represented in the * form * * H = I - tau * v * v**T * * where tau is a real scalar and v is a real vector. * * If tau = 0, then H is taken to be the unit matrix. * * * H is a product of k elementary reflectors as returned by STZRZF. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': form H * C * = 'R': form C * H * * M (input) INTEGER * The number of rows of the matrix C. * * N (input) INTEGER * The number of columns of the matrix C. * * L (input) INTEGER * The number of entries of the vector V containing * the meaningful part of the Householder vectors. * If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. * * V (input) REAL array, dimension (1+(L-1)*abs(INCV)) * The vector v in the representation of H as returned by * STZRZF. V is not used if TAU = 0. * * INCV (input) INTEGER * The increment between elements of v. INCV <> 0. * * TAU (input) REAL * The value tau in the representation of H. * * C (input/output) REAL array, dimension (LDC,N) * On entry, the M-by-N matrix C. * On exit, C is overwritten by the matrix H * C if SIDE = 'L', * or C * H if SIDE = 'R'. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace) REAL array, dimension * (N) if SIDE = 'L' * or (M) if SIDE = 'R' * * Further Details * =============== * * Based on contributions by * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. External Subroutines .. EXTERNAL SAXPY, SCOPY, SGEMV, SGER * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Executable Statements .. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C * IF( TAU.NE.ZERO ) THEN * * w( 1:n ) = C( 1, 1:n ) * CALL SCOPY( N, C, LDC, WORK, 1 ) * * w( 1:n ) = w( 1:n ) + C( m-l+1:m, 1:n )**T * v( 1:l ) * CALL SGEMV( 'Transpose', L, N, ONE, C( M-L+1, 1 ), LDC, V, $ INCV, ONE, WORK, 1 ) * * C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n ) * CALL SAXPY( N, -TAU, WORK, 1, C, LDC ) * * C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... * tau * v( 1:l ) * w( 1:n )**T * CALL SGER( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ), $ LDC ) END IF * ELSE * * Form C * H * IF( TAU.NE.ZERO ) THEN * * w( 1:m ) = C( 1:m, 1 ) * CALL SCOPY( M, C, 1, WORK, 1 ) * * w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l ) * CALL SGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC, $ V, INCV, ONE, WORK, 1 ) * * C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m ) * CALL SAXPY( M, -TAU, WORK, 1, C, 1 ) * * C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... * tau * w( 1:m ) * v( 1:l )**T * CALL SGER( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ), $ LDC ) * END IF * END IF * RETURN * * End of SLARZ * END |