1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
      SUBROUTINE SLATZMSIDEMNVINCVTAUC1C2LDCWORK )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE
      INTEGER            INCVLDCMN
      REAL               TAU
*     ..
*     .. Array Arguments ..
      REAL               C1LDC* ), C2LDC* ), V* ), WORK* )
*     ..
*
*  Purpose
*  =======
*
*  This routine is deprecated and has been replaced by routine SORMRZ.
*
*  SLATZM applies a Householder matrix generated by STZRQF to a matrix.
*
*  Let P = I - tau*u*u**T,   u = ( 1 ),
*                                ( v )
*  where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
*  SIDE = 'R'.
*
*  If SIDE equals 'L', let
*         C = [ C1 ] 1
*             [ C2 ] m-1
*               n
*  Then C is overwritten by P*C.
*
*  If SIDE equals 'R', let
*         C = [ C1, C2 ] m
*                1  n-1
*  Then C is overwritten by C*P.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': form P * C
*          = 'R': form C * P
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  V       (input) REAL array, dimension
*                  (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*                  (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*          The vector v in the representation of P. V is not used
*          if TAU = 0.
*
*  INCV    (input) INTEGER
*          The increment between elements of v. INCV <> 0
*
*  TAU     (input) REAL
*          The value tau in the representation of P.
*
*  C1      (input/output) REAL array, dimension
*                         (LDC,N) if SIDE = 'L'
*                         (M,1)   if SIDE = 'R'
*          On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
*          if SIDE = 'R'.
*
*          On exit, the first row of P*C if SIDE = 'L', or the first
*          column of C*P if SIDE = 'R'.
*
*  C2      (input/output) REAL array, dimension
*                         (LDC, N)   if SIDE = 'L'
*                         (LDC, N-1) if SIDE = 'R'
*          On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
*          m x (n - 1) matrix C2 if SIDE = 'R'.
*
*          On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
*          if SIDE = 'R'.
*
*  LDC     (input) INTEGER
*          The leading dimension of the arrays C1 and C2. LDC >= (1,M).
*
*  WORK    (workspace) REAL array, dimension
*                      (N) if SIDE = 'L'
*                      (M) if SIDE = 'R'
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONEZERO
      PARAMETER          ( ONE = 1.0E+0ZERO = 0.0E+0 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPYSCOPYSGEMVSGER
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
      IF( ( MINMN ).EQ.0 ) .OR. ( TAU.EQ.ZERO ) )
     $   RETURN
*
      IFLSAMESIDE'L' ) ) THEN
*
*        w :=  (C1 + v**T * C2)**T
*
         CALL SCOPYNC1LDCWORK1 )
         CALL SGEMV'Transpose'M-1NONEC2LDCVINCVONE,
     $               WORK1 )
*
*        [ C1 ] := [ C1 ] - tau* [ 1 ] * w**T
*        [ C2 ]    [ C2 ]        [ v ]
*
         CALL SAXPYN-TAUWORK1C1LDC )
         CALL SGERM-1N-TAUVINCVWORK1C2LDC )
*
      ELSE IFLSAMESIDE'R' ) ) THEN
*
*        w := C1 + C2 * v
*
         CALL SCOPYMC11WORK1 )
         CALL SGEMV'No transpose'MN-1ONEC2LDCVINCVONE,
     $               WORK1 )
*
*        [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**T]
*
         CALL SAXPYM-TAUWORK1C11 )
         CALL SGERMN-1-TAUWORK1VINCVC2LDC )
      END IF
*
      RETURN
*
*     End of SLATZM
*
      END