1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
RECURSIVE SUBROUTINE SORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
$ SIGNS, M, P, Q, X11, LDX11, X12, $ LDX12, X21, LDX21, X22, LDX22, THETA, $ U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, $ LDV2T, WORK, LWORK, IWORK, INFO ) IMPLICIT NONE * * -- LAPACK routine (version 3.3.1) -- * * -- Contributed by Brian Sutton of the Randolph-Macon College -- * -- November 2010 * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * @generated s * * .. Scalar Arguments .. CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12, $ LDX21, LDX22, LWORK, M, P, Q * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL THETA( * ) REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ), $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22, $ * ) * .. * * Purpose * ======= * * SORCSD computes the CS decomposition of an M-by-M partitioned * orthogonal matrix X: * * [ I 0 0 | 0 0 0 ] * [ 0 C 0 | 0 -S 0 ] * [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T * X = [-----------] = [---------] [---------------------] [---------] . * [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ] * [ 0 S 0 | 0 C 0 ] * [ 0 0 I | 0 0 0 ] * * X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P, * (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are * R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in * which R = MIN(P,M-P,Q,M-Q). * * Arguments * ========= * * JOBU1 (input) CHARACTER * = 'Y': U1 is computed; * otherwise: U1 is not computed. * * JOBU2 (input) CHARACTER * = 'Y': U2 is computed; * otherwise: U2 is not computed. * * JOBV1T (input) CHARACTER * = 'Y': V1T is computed; * otherwise: V1T is not computed. * * JOBV2T (input) CHARACTER * = 'Y': V2T is computed; * otherwise: V2T is not computed. * * TRANS (input) CHARACTER * = 'T': X, U1, U2, V1T, and V2T are stored in row-major * order; * otherwise: X, U1, U2, V1T, and V2T are stored in column- * major order. * * SIGNS (input) CHARACTER * = 'O': The lower-left block is made nonpositive (the * "other" convention); * otherwise: The upper-right block is made nonpositive (the * "default" convention). * * M (input) INTEGER * The number of rows and columns in X. * * P (input) INTEGER * The number of rows in X11 and X12. 0 <= P <= M. * * Q (input) INTEGER * The number of columns in X11 and X21. 0 <= Q <= M. * * X (input/workspace) REAL array, dimension (LDX,M) * On entry, the orthogonal matrix whose CSD is desired. * * LDX (input) INTEGER * The leading dimension of X. LDX >= MAX(1,M). * * THETA (output) REAL array, dimension (R), in which R = * MIN(P,M-P,Q,M-Q). * C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and * S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). * * U1 (output) REAL array, dimension (P) * If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1. * * LDU1 (input) INTEGER * The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= * MAX(1,P). * * U2 (output) REAL array, dimension (M-P) * If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal * matrix U2. * * LDU2 (input) INTEGER * The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= * MAX(1,M-P). * * V1T (output) REAL array, dimension (Q) * If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal * matrix V1**T. * * LDV1T (input) INTEGER * The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= * MAX(1,Q). * * V2T (output) REAL array, dimension (M-Q) * If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal * matrix V2**T. * * LDV2T (input) INTEGER * The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= * MAX(1,M-Q). * * WORK (workspace) REAL array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), * ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), * define the matrix in intermediate bidiagonal-block form * remaining after nonconvergence. INFO specifies the number * of nonzero PHI's. * * LWORK (input) INTEGER * The dimension of the array WORK. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the work array, and no error * message related to LWORK is issued by XERBLA. * * IWORK (workspace) INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q)) * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: SBBCSD did not converge. See the description of WORK * above for details. * * Reference * ========= * * [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. * Algorithms, 50(1):33-65, 2009. * * =================================================================== * * .. Parameters .. REAL REALONE PARAMETER ( REALONE = 1.0E+0 ) REAL NEGONE, ONE, PIOVER2, ZERO PARAMETER ( NEGONE = -1.0E+0, ONE = 1.0E+0, $ PIOVER2 = 1.57079632679489662E0, $ ZERO = 0.0E+0 ) * .. * .. Local Scalars .. CHARACTER TRANST, SIGNST INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E, $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB, $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1, $ ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN, $ LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN, $ LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN, $ LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN, $ LORGQRWORKOPT, LWORKMIN, LWORKOPT LOGICAL COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2, $ WANTV1T, WANTV2T * .. * .. External Subroutines .. EXTERNAL SBBCSD, SLACPY, SLAPMR, SLAPMT, SLASCL, SLASET, $ SORBDB, SORGLQ, SORGQR, XERBLA * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions INTRINSIC COS, INT, MAX, MIN, SIN * .. * .. Executable Statements .. * * Test input arguments * INFO = 0 WANTU1 = LSAME( JOBU1, 'Y' ) WANTU2 = LSAME( JOBU2, 'Y' ) WANTV1T = LSAME( JOBV1T, 'Y' ) WANTV2T = LSAME( JOBV2T, 'Y' ) COLMAJOR = .NOT. LSAME( TRANS, 'T' ) DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' ) LQUERY = LWORK .EQ. -1 IF( M .LT. 0 ) THEN INFO = -7 ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN INFO = -8 ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN INFO = -9 ELSE IF( ( COLMAJOR .AND. LDX11 .LT. MAX(1,P) ) .OR. $ ( .NOT.COLMAJOR .AND. LDX11 .LT. MAX(1,Q) ) ) THEN INFO = -11 ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN INFO = -14 ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN INFO = -16 ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN INFO = -18 ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN INFO = -20 END IF * * Work with transpose if convenient * IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN IF( COLMAJOR ) THEN TRANST = 'T' ELSE TRANST = 'N' END IF IF( DEFAULTSIGNS ) THEN SIGNST = 'O' ELSE SIGNST = 'D' END IF CALL SORCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M, $ Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22, $ LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1, $ U2, LDU2, WORK, LWORK, IWORK, INFO ) RETURN END IF * * Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if * convenient * IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN IF( DEFAULTSIGNS ) THEN SIGNST = 'O' ELSE SIGNST = 'D' END IF CALL SORCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M, $ M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11, $ LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T, $ LDV1T, WORK, LWORK, IWORK, INFO ) RETURN END IF * * Compute workspace * IF( INFO .EQ. 0 ) THEN * IPHI = 2 ITAUP1 = IPHI + MAX( 1, Q - 1 ) ITAUP2 = ITAUP1 + MAX( 1, P ) ITAUQ1 = ITAUP2 + MAX( 1, M - P ) ITAUQ2 = ITAUQ1 + MAX( 1, Q ) IORGQR = ITAUQ2 + MAX( 1, M - Q ) CALL SORGQR( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1, $ CHILDINFO ) LORGQRWORKOPT = INT( WORK(1) ) LORGQRWORKMIN = MAX( 1, M - Q ) IORGLQ = ITAUQ2 + MAX( 1, M - Q ) CALL SORGLQ( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1, $ CHILDINFO ) LORGLQWORKOPT = INT( WORK(1) ) LORGLQWORKMIN = MAX( 1, M - Q ) IORBDB = ITAUQ2 + MAX( 1, M - Q ) CALL SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, $ X21, LDX21, X22, LDX22, 0, 0, 0, 0, 0, 0, WORK, $ -1, CHILDINFO ) LORBDBWORKOPT = INT( WORK(1) ) LORBDBWORKMIN = LORBDBWORKOPT IB11D = ITAUQ2 + MAX( 1, M - Q ) IB11E = IB11D + MAX( 1, Q ) IB12D = IB11E + MAX( 1, Q - 1 ) IB12E = IB12D + MAX( 1, Q ) IB21D = IB12E + MAX( 1, Q - 1 ) IB21E = IB21D + MAX( 1, Q ) IB22D = IB21E + MAX( 1, Q - 1 ) IB22E = IB22D + MAX( 1, Q ) IBBCSD = IB22E + MAX( 1, Q - 1 ) CALL SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, 0, $ 0, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, 0, $ 0, 0, 0, 0, 0, 0, 0, WORK, -1, CHILDINFO ) LBBCSDWORKOPT = INT( WORK(1) ) LBBCSDWORKMIN = LBBCSDWORKOPT LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT, $ IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKOPT ) - 1 LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN, $ IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKMIN ) - 1 WORK(1) = MAX(LWORKOPT,LWORKMIN) * IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN INFO = -22 ELSE LORGQRWORK = LWORK - IORGQR + 1 LORGLQWORK = LWORK - IORGLQ + 1 LORBDBWORK = LWORK - IORBDB + 1 LBBCSDWORK = LWORK - IBBCSD + 1 END IF END IF * * Abort if any illegal arguments * IF( INFO .NE. 0 ) THEN CALL XERBLA( 'SORCSD', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Transform to bidiagonal block form * CALL SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, $ LDX21, X22, LDX22, THETA, WORK(IPHI), WORK(ITAUP1), $ WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2), $ WORK(IORBDB), LORBDBWORK, CHILDINFO ) * * Accumulate Householder reflectors * IF( COLMAJOR ) THEN IF( WANTU1 .AND. P .GT. 0 ) THEN CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 ) CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR), $ LORGQRWORK, INFO) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 ) CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2), $ WORK(IORGQR), LORGQRWORK, INFO ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL SLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2), $ LDV1T ) V1T(1, 1) = ONE DO J = 2, Q V1T(1,J) = ZERO V1T(J,1) = ZERO END DO CALL SORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1), $ WORK(IORGLQ), LORGLQWORK, INFO ) END IF IF( WANTV2T .AND. M-Q .GT. 0 ) THEN CALL SLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T ) CALL SLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22, $ V2T(P+1,P+1), LDV2T ) CALL SORGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2), $ WORK(IORGLQ), LORGLQWORK, INFO ) END IF ELSE IF( WANTU1 .AND. P .GT. 0 ) THEN CALL SLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 ) CALL SORGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ), $ LORGLQWORK, INFO) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL SLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 ) CALL SORGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2), $ WORK(IORGLQ), LORGLQWORK, INFO ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL SLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2), $ LDV1T ) V1T(1, 1) = ONE DO J = 2, Q V1T(1,J) = ZERO V1T(J,1) = ZERO END DO CALL SORGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1), $ WORK(IORGQR), LORGQRWORK, INFO ) END IF IF( WANTV2T .AND. M-Q .GT. 0 ) THEN CALL SLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T ) CALL SLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22, $ V2T(P+1,P+1), LDV2T ) CALL SORGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2), $ WORK(IORGQR), LORGQRWORK, INFO ) END IF END IF * * Compute the CSD of the matrix in bidiagonal-block form * CALL SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA, $ WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, $ LDV2T, WORK(IB11D), WORK(IB11E), WORK(IB12D), $ WORK(IB12E), WORK(IB21D), WORK(IB21E), WORK(IB22D), $ WORK(IB22E), WORK(IBBCSD), LBBCSDWORK, INFO ) * * Permute rows and columns to place identity submatrices in top- * left corner of (1,1)-block and/or bottom-right corner of (1,2)- * block and/or bottom-right corner of (2,1)-block and/or top-left * corner of (2,2)-block * IF( Q .GT. 0 .AND. WANTU2 ) THEN DO I = 1, Q IWORK(I) = M - P - Q + I END DO DO I = Q + 1, M - P IWORK(I) = I - Q END DO IF( COLMAJOR ) THEN CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK ) ELSE CALL SLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK ) END IF END IF IF( M .GT. 0 .AND. WANTV2T ) THEN DO I = 1, P IWORK(I) = M - P - Q + I END DO DO I = P + 1, M - Q IWORK(I) = I - P END DO IF( .NOT. COLMAJOR ) THEN CALL SLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK ) ELSE CALL SLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK ) END IF END IF * RETURN * * End SORCSD * END |