SORGR2
   November 2006
Purpose
SORGR2 generates an m by n real matrix Q with orthonormal rows,
which is defined as the last m rows of a product of k elementary
reflectors of order n
Q = H(1) H(2) . . . H(k)
as returned by SGERQF.
which is defined as the last m rows of a product of k elementary
reflectors of order n
Q = H(1) H(2) . . . H(k)
as returned by SGERQF.
Arguments
| M | 
 
(input) INTEGER
 
The number of rows of the matrix Q. M >= 0. 
 | 
| N | 
 
(input) INTEGER
 
The number of columns of the matrix Q. N >= M. 
 | 
| K | 
 
(input) INTEGER
 
The number of elementary reflectors whose product defines the 
matrix Q. M >= K >= 0.  | 
| A | 
 
(input/output) REAL array, dimension (LDA,N)
 
On entry, the (m-k+i)-th row must contain the vector which 
defines the elementary reflector H(i), for i = 1,2,...,k, as returned by SGERQF in the last k rows of its array argument A. On exit, the m by n matrix Q.  | 
| LDA | 
 
(input) INTEGER
 
The first dimension of the array A. LDA >= max(1,M). 
 | 
| TAU | 
 
(input) REAL array, dimension (K)
 
TAU(i) must contain the scalar factor of the elementary 
reflector H(i), as returned by SGERQF.  | 
| WORK | 
 
(workspace) REAL array, dimension (M)
 
 | 
| INFO | 
 
(output) INTEGER
 
= 0: successful exit 
< 0: if INFO = -i, the i-th argument has an illegal value  |