1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
SUBROUTINE SORMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
$ WORK, LWORK, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS, UPLO INTEGER INFO, LDA, LDC, LWORK, M, N * .. * .. Array Arguments .. REAL A( LDA, * ), C( LDC, * ), TAU( * ), $ WORK( * ) * .. * * Purpose * ======= * * SORMTR overwrites the general real M-by-N matrix C with * * SIDE = 'L' SIDE = 'R' * TRANS = 'N': Q * C C * Q * TRANS = 'T': Q**T * C C * Q**T * * where Q is a real orthogonal matrix of order nq, with nq = m if * SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of * nq-1 elementary reflectors, as returned by SSYTRD: * * if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); * * if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': apply Q or Q**T from the Left; * = 'R': apply Q or Q**T from the Right. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A contains elementary reflectors * from SSYTRD; * = 'L': Lower triangle of A contains elementary reflectors * from SSYTRD. * * TRANS (input) CHARACTER*1 * = 'N': No transpose, apply Q; * = 'T': Transpose, apply Q**T. * * M (input) INTEGER * The number of rows of the matrix C. M >= 0. * * N (input) INTEGER * The number of columns of the matrix C. N >= 0. * * A (input) REAL array, dimension * (LDA,M) if SIDE = 'L' * (LDA,N) if SIDE = 'R' * The vectors which define the elementary reflectors, as * returned by SSYTRD. * * LDA (input) INTEGER * The leading dimension of the array A. * LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. * * TAU (input) REAL array, dimension * (M-1) if SIDE = 'L' * (N-1) if SIDE = 'R' * TAU(i) must contain the scalar factor of the elementary * reflector H(i), as returned by SSYTRD. * * C (input/output) REAL array, dimension (LDC,N) * On entry, the M-by-N matrix C. * On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. * If SIDE = 'L', LWORK >= max(1,N); * if SIDE = 'R', LWORK >= max(1,M). * For optimum performance LWORK >= N*NB if SIDE = 'L', and * LWORK >= M*NB if SIDE = 'R', where NB is the optimal * blocksize. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Local Scalars .. LOGICAL LEFT, LQUERY, UPPER INTEGER I1, I2, IINFO, LWKOPT, MI, NI, NB, NQ, NW * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL ILAENV, LSAME * .. * .. External Subroutines .. EXTERNAL SORMQL, SORMQR, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LEFT = LSAME( SIDE, 'L' ) UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) * * NQ is the order of Q and NW is the minimum dimension of WORK * IF( LEFT ) THEN NQ = M NW = N ELSE NQ = N NW = M END IF IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN INFO = -1 ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -2 ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) ) $ THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN INFO = -7 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN INFO = -12 END IF * IF( INFO.EQ.0 ) THEN IF( UPPER ) THEN IF( LEFT ) THEN NB = ILAENV( 1, 'SORMQL', SIDE // TRANS, M-1, N, M-1, $ -1 ) ELSE NB = ILAENV( 1, 'SORMQL', SIDE // TRANS, M, N-1, N-1, $ -1 ) END IF ELSE IF( LEFT ) THEN NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M-1, N, M-1, $ -1 ) ELSE NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M, N-1, N-1, $ -1 ) END IF END IF LWKOPT = MAX( 1, NW )*NB WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SORMTR', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 .OR. NQ.EQ.1 ) THEN WORK( 1 ) = 1 RETURN END IF * IF( LEFT ) THEN MI = M - 1 NI = N ELSE MI = M NI = N - 1 END IF * IF( UPPER ) THEN * * Q was determined by a call to SSYTRD with UPLO = 'U' * CALL SORMQL( SIDE, TRANS, MI, NI, NQ-1, A( 1, 2 ), LDA, TAU, C, $ LDC, WORK, LWORK, IINFO ) ELSE * * Q was determined by a call to SSYTRD with UPLO = 'L' * IF( LEFT ) THEN I1 = 2 I2 = 1 ELSE I1 = 1 I2 = 2 END IF CALL SORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU, $ C( I1, I2 ), LDC, WORK, LWORK, IINFO ) END IF WORK( 1 ) = LWKOPT RETURN * * End of SORMTR * END |