1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
SUBROUTINE SPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )
* * -- LAPACK routine (version 3.3.1) -- * * -- Contributed by Fred Gustavson of the IBM Watson Research Center -- * -- April 2011 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER TRANSR, UPLO INTEGER INFO, LDB, N, NRHS * .. * .. Array Arguments .. REAL A( 0: * ), B( LDB, * ) * .. * * Purpose * ======= * * SPFTRS solves a system of linear equations A*X = B with a symmetric * positive definite matrix A using the Cholesky factorization * A = U**T*U or A = L*L**T computed by SPFTRF. * * Arguments * ========= * * TRANSR (input) CHARACTER*1 * = 'N': The Normal TRANSR of RFP A is stored; * = 'T': The Transpose TRANSR of RFP A is stored. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of RFP A is stored; * = 'L': Lower triangle of RFP A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * A (input) REAL array, dimension ( N*(N+1)/2 ) * The triangular factor U or L from the Cholesky factorization * of RFP A = U**H*U or RFP A = L*L**T, as computed by SPFTRF. * See note below for more details about RFP A. * * B (input/output) REAL array, dimension (LDB,NRHS) * On entry, the right hand side matrix B. * On exit, the solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * We first consider Rectangular Full Packed (RFP) Format when N is * even. We give an example where N = 6. * * AP is Upper AP is Lower * * 00 01 02 03 04 05 00 * 11 12 13 14 15 10 11 * 22 23 24 25 20 21 22 * 33 34 35 30 31 32 33 * 44 45 40 41 42 43 44 * 55 50 51 52 53 54 55 * * * Let TRANSR = 'N'. RFP holds AP as follows: * For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last * three columns of AP upper. The lower triangle A(4:6,0:2) consists of * the transpose of the first three columns of AP upper. * For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first * three columns of AP lower. The upper triangle A(0:2,0:2) consists of * the transpose of the last three columns of AP lower. * This covers the case N even and TRANSR = 'N'. * * RFP A RFP A * * 03 04 05 33 43 53 * 13 14 15 00 44 54 * 23 24 25 10 11 55 * 33 34 35 20 21 22 * 00 44 45 30 31 32 * 01 11 55 40 41 42 * 02 12 22 50 51 52 * * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the * transpose of RFP A above. One therefore gets: * * * RFP A RFP A * * 03 13 23 33 00 01 02 33 00 10 20 30 40 50 * 04 14 24 34 44 11 12 43 44 11 21 31 41 51 * 05 15 25 35 45 55 22 53 54 55 22 32 42 52 * * * We then consider Rectangular Full Packed (RFP) Format when N is * odd. We give an example where N = 5. * * AP is Upper AP is Lower * * 00 01 02 03 04 00 * 11 12 13 14 10 11 * 22 23 24 20 21 22 * 33 34 30 31 32 33 * 44 40 41 42 43 44 * * * Let TRANSR = 'N'. RFP holds AP as follows: * For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last * three columns of AP upper. The lower triangle A(3:4,0:1) consists of * the transpose of the first two columns of AP upper. * For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first * three columns of AP lower. The upper triangle A(0:1,1:2) consists of * the transpose of the last two columns of AP lower. * This covers the case N odd and TRANSR = 'N'. * * RFP A RFP A * * 02 03 04 00 33 43 * 12 13 14 10 11 44 * 22 23 24 20 21 22 * 00 33 34 30 31 32 * 01 11 44 40 41 42 * * Now let TRANSR = 'T'. RFP A in both UPLO cases is just the * transpose of RFP A above. One therefore gets: * * RFP A RFP A * * 02 12 22 00 01 00 10 20 30 40 50 * 03 13 23 33 11 33 11 21 31 41 51 * 04 14 24 34 44 43 44 22 32 42 52 * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL LOWER, NORMALTRANSR * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, STFSM * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 NORMALTRANSR = LSAME( TRANSR, 'N' ) LOWER = LSAME( UPLO, 'L' ) IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN INFO = -1 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NRHS.LT.0 ) THEN INFO = -4 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SPFTRS', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) $ RETURN * * start execution: there are two triangular solves * IF( LOWER ) THEN CALL STFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B, $ LDB ) CALL STFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B, $ LDB ) ELSE CALL STFSM( TRANSR, 'L', UPLO, 'T', 'N', N, NRHS, ONE, A, B, $ LDB ) CALL STFSM( TRANSR, 'L', UPLO, 'N', 'N', N, NRHS, ONE, A, B, $ LDB ) END IF * RETURN * * End of SPFTRS * END |