1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
SUBROUTINE SPPCON( UPLO, N, AP, ANORM, RCOND, WORK, IWORK, INFO )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, N REAL ANORM, RCOND * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL AP( * ), WORK( * ) * .. * * Purpose * ======= * * SPPCON estimates the reciprocal of the condition number (in the * 1-norm) of a real symmetric positive definite packed matrix using * the Cholesky factorization A = U**T*U or A = L*L**T computed by * SPPTRF. * * An estimate is obtained for norm(inv(A)), and the reciprocal of the * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * AP (input) REAL array, dimension (N*(N+1)/2) * The triangular factor U or L from the Cholesky factorization * A = U**T*U or A = L*L**T, packed columnwise in a linear * array. The j-th column of U or L is stored in the array AP * as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. * * ANORM (input) REAL * The 1-norm (or infinity-norm) of the symmetric matrix A. * * RCOND (output) REAL * The reciprocal of the condition number of the matrix A, * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an * estimate of the 1-norm of inv(A) computed in this routine. * * WORK (workspace) REAL array, dimension (3*N) * * IWORK (workspace) INTEGER array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL UPPER CHARACTER NORMIN INTEGER IX, KASE REAL AINVNM, SCALE, SCALEL, SCALEU, SMLNUM * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) * .. * .. External Functions .. LOGICAL LSAME INTEGER ISAMAX REAL SLAMCH EXTERNAL LSAME, ISAMAX, SLAMCH * .. * .. External Subroutines .. EXTERNAL SLACN2, SLATPS, SRSCL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( ANORM.LT.ZERO ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SPPCON', -INFO ) RETURN END IF * * Quick return if possible * RCOND = ZERO IF( N.EQ.0 ) THEN RCOND = ONE RETURN ELSE IF( ANORM.EQ.ZERO ) THEN RETURN END IF * SMLNUM = SLAMCH( 'Safe minimum' ) * * Estimate the 1-norm of the inverse. * KASE = 0 NORMIN = 'N' 10 CONTINUE CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE ) IF( KASE.NE.0 ) THEN IF( UPPER ) THEN * * Multiply by inv(U**T). * CALL SLATPS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N, $ AP, WORK, SCALEL, WORK( 2*N+1 ), INFO ) NORMIN = 'Y' * * Multiply by inv(U). * CALL SLATPS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N, $ AP, WORK, SCALEU, WORK( 2*N+1 ), INFO ) ELSE * * Multiply by inv(L). * CALL SLATPS( 'Lower', 'No transpose', 'Non-unit', NORMIN, N, $ AP, WORK, SCALEL, WORK( 2*N+1 ), INFO ) NORMIN = 'Y' * * Multiply by inv(L**T). * CALL SLATPS( 'Lower', 'Transpose', 'Non-unit', NORMIN, N, $ AP, WORK, SCALEU, WORK( 2*N+1 ), INFO ) END IF * * Multiply by 1/SCALE if doing so will not cause overflow. * SCALE = SCALEL*SCALEU IF( SCALE.NE.ONE ) THEN IX = ISAMAX( N, WORK, 1 ) IF( SCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO ) $ GO TO 20 CALL SRSCL( N, SCALE, WORK, 1 ) END IF GO TO 10 END IF * * Compute the estimate of the reciprocal condition number. * IF( AINVNM.NE.ZERO ) $ RCOND = ( ONE / AINVNM ) / ANORM * 20 CONTINUE RETURN * * End of SPPCON * END |