SPPEQU
   November 2006
Purpose
SPPEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A in packed storage and reduce
its condition number (with respect to the two-norm). S contains the
scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
This choice of S puts the condition number of B within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
symmetric positive definite matrix A in packed storage and reduce
its condition number (with respect to the two-norm). S contains the
scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
This choice of S puts the condition number of B within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Arguments
| UPLO | 
 
(input) CHARACTER*1
 
= 'U':  Upper triangle of A is stored; 
= 'L': Lower triangle of A is stored.  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| AP | 
 
(input) REAL array, dimension (N*(N+1)/2)
 
The upper or lower triangle of the symmetric matrix A, packed 
columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.  | 
| S | 
 
(output) REAL array, dimension (N)
 
If INFO = 0, S contains the scale factors for A. 
 | 
| SCOND | 
 
(output) REAL
 
If INFO = 0, S contains the ratio of the smallest S(i) to 
the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S.  | 
| AMAX | 
 
(output) REAL
 
Absolute value of largest matrix element.  If AMAX is very 
close to overflow or very close to underflow, the matrix should be scaled.  | 
| INFO | 
 
(output) INTEGER
 
= 0:  successful exit 
< 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the i-th diagonal element is nonpositive.  |