1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
SUBROUTINE SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
$ BERR, WORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INFO, LDB, LDX, N, NRHS * .. * .. Array Arguments .. REAL B( LDB, * ), BERR( * ), D( * ), DF( * ), $ E( * ), EF( * ), FERR( * ), WORK( * ), $ X( LDX, * ) * .. * * Purpose * ======= * * SPTRFS improves the computed solution to a system of linear * equations when the coefficient matrix is symmetric positive definite * and tridiagonal, and provides error bounds and backward error * estimates for the solution. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * D (input) REAL array, dimension (N) * The n diagonal elements of the tridiagonal matrix A. * * E (input) REAL array, dimension (N-1) * The (n-1) subdiagonal elements of the tridiagonal matrix A. * * DF (input) REAL array, dimension (N) * The n diagonal elements of the diagonal matrix D from the * factorization computed by SPTTRF. * * EF (input) REAL array, dimension (N-1) * The (n-1) subdiagonal elements of the unit bidiagonal factor * L from the factorization computed by SPTTRF. * * B (input) REAL array, dimension (LDB,NRHS) * The right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (input/output) REAL array, dimension (LDX,NRHS) * On entry, the solution matrix X, as computed by SPTTRS. * On exit, the improved solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * FERR (output) REAL array, dimension (NRHS) * The forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). * * BERR (output) REAL array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) REAL array, dimension (2*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Internal Parameters * =================== * * ITMAX is the maximum number of steps of iterative refinement. * * ===================================================================== * * .. Parameters .. INTEGER ITMAX PARAMETER ( ITMAX = 5 ) REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) REAL ONE PARAMETER ( ONE = 1.0E+0 ) REAL TWO PARAMETER ( TWO = 2.0E+0 ) REAL THREE PARAMETER ( THREE = 3.0E+0 ) * .. * .. Local Scalars .. INTEGER COUNT, I, IX, J, NZ REAL BI, CX, DX, EPS, EX, LSTRES, S, SAFE1, SAFE2, $ SAFMIN * .. * .. External Subroutines .. EXTERNAL SAXPY, SPTTRS, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. External Functions .. INTEGER ISAMAX REAL SLAMCH EXTERNAL ISAMAX, SLAMCH * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( N.LT.0 ) THEN INFO = -1 ELSE IF( NRHS.LT.0 ) THEN INFO = -2 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SPTRFS', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN DO 10 J = 1, NRHS FERR( J ) = ZERO BERR( J ) = ZERO 10 CONTINUE RETURN END IF * * NZ = maximum number of nonzero elements in each row of A, plus 1 * NZ = 4 EPS = SLAMCH( 'Epsilon' ) SAFMIN = SLAMCH( 'Safe minimum' ) SAFE1 = NZ*SAFMIN SAFE2 = SAFE1 / EPS * * Do for each right hand side * DO 90 J = 1, NRHS * COUNT = 1 LSTRES = THREE 20 CONTINUE * * Loop until stopping criterion is satisfied. * * Compute residual R = B - A * X. Also compute * abs(A)*abs(x) + abs(b) for use in the backward error bound. * IF( N.EQ.1 ) THEN BI = B( 1, J ) DX = D( 1 )*X( 1, J ) WORK( N+1 ) = BI - DX WORK( 1 ) = ABS( BI ) + ABS( DX ) ELSE BI = B( 1, J ) DX = D( 1 )*X( 1, J ) EX = E( 1 )*X( 2, J ) WORK( N+1 ) = BI - DX - EX WORK( 1 ) = ABS( BI ) + ABS( DX ) + ABS( EX ) DO 30 I = 2, N - 1 BI = B( I, J ) CX = E( I-1 )*X( I-1, J ) DX = D( I )*X( I, J ) EX = E( I )*X( I+1, J ) WORK( N+I ) = BI - CX - DX - EX WORK( I ) = ABS( BI ) + ABS( CX ) + ABS( DX ) + ABS( EX ) 30 CONTINUE BI = B( N, J ) CX = E( N-1 )*X( N-1, J ) DX = D( N )*X( N, J ) WORK( N+N ) = BI - CX - DX WORK( N ) = ABS( BI ) + ABS( CX ) + ABS( DX ) END IF * * Compute componentwise relative backward error from formula * * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) * * where abs(Z) is the componentwise absolute value of the matrix * or vector Z. If the i-th component of the denominator is less * than SAFE2, then SAFE1 is added to the i-th components of the * numerator and denominator before dividing. * S = ZERO DO 40 I = 1, N IF( WORK( I ).GT.SAFE2 ) THEN S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) ) ELSE S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) / $ ( WORK( I )+SAFE1 ) ) END IF 40 CONTINUE BERR( J ) = S * * Test stopping criterion. Continue iterating if * 1) The residual BERR(J) is larger than machine epsilon, and * 2) BERR(J) decreased by at least a factor of 2 during the * last iteration, and * 3) At most ITMAX iterations tried. * IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND. $ COUNT.LE.ITMAX ) THEN * * Update solution and try again. * CALL SPTTRS( N, 1, DF, EF, WORK( N+1 ), N, INFO ) CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 ) LSTRES = BERR( J ) COUNT = COUNT + 1 GO TO 20 END IF * * Bound error from formula * * norm(X - XTRUE) / norm(X) .le. FERR = * norm( abs(inv(A))* * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) * * where * norm(Z) is the magnitude of the largest component of Z * inv(A) is the inverse of A * abs(Z) is the componentwise absolute value of the matrix or * vector Z * NZ is the maximum number of nonzeros in any row of A, plus 1 * EPS is machine epsilon * * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) * is incremented by SAFE1 if the i-th component of * abs(A)*abs(X) + abs(B) is less than SAFE2. * DO 50 I = 1, N IF( WORK( I ).GT.SAFE2 ) THEN WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) ELSE WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1 END IF 50 CONTINUE IX = ISAMAX( N, WORK, 1 ) FERR( J ) = WORK( IX ) * * Estimate the norm of inv(A). * * Solve M(A) * x = e, where M(A) = (m(i,j)) is given by * * m(i,j) = abs(A(i,j)), i = j, * m(i,j) = -abs(A(i,j)), i .ne. j, * * and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**T. * * Solve M(L) * x = e. * WORK( 1 ) = ONE DO 60 I = 2, N WORK( I ) = ONE + WORK( I-1 )*ABS( EF( I-1 ) ) 60 CONTINUE * * Solve D * M(L)**T * x = b. * WORK( N ) = WORK( N ) / DF( N ) DO 70 I = N - 1, 1, -1 WORK( I ) = WORK( I ) / DF( I ) + WORK( I+1 )*ABS( EF( I ) ) 70 CONTINUE * * Compute norm(inv(A)) = max(x(i)), 1<=i<=n. * IX = ISAMAX( N, WORK, 1 ) FERR( J ) = FERR( J )*ABS( WORK( IX ) ) * * Normalize error. * LSTRES = ZERO DO 80 I = 1, N LSTRES = MAX( LSTRES, ABS( X( I, J ) ) ) 80 CONTINUE IF( LSTRES.NE.ZERO ) $ FERR( J ) = FERR( J ) / LSTRES * 90 CONTINUE * RETURN * * End of SPTRFS * END |