SPTTRF
Purpose
SPTTRF computes the L*D*L**T factorization of a real symmetric
positive definite tridiagonal matrix A. The factorization may also
be regarded as having the form A = U**T*D*U.
positive definite tridiagonal matrix A. The factorization may also
be regarded as having the form A = U**T*D*U.
Arguments
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| D | 
 
(input/output) REAL array, dimension (N)
 
On entry, the n diagonal elements of the tridiagonal matrix 
A. On exit, the n diagonal elements of the diagonal matrix D from the L*D*L**T factorization of A.  | 
| E | 
 
(input/output) REAL array, dimension (N-1)
 
On entry, the (n-1) subdiagonal elements of the tridiagonal 
matrix A. On exit, the (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*L**T factorization of A. E can also be regarded as the superdiagonal of the unit bidiagonal factor U from the U**T*D*U factorization of A.  | 
| INFO | 
 
(output) INTEGER
 
= 0: successful exit 
< 0: if INFO = -k, the k-th argument had an illegal value > 0: if INFO = k, the leading minor of order k is not positive definite; if k < N, the factorization could not be completed, while if k = N, the factorization was completed, but D(N) <= 0.  |