1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
SUBROUTINE SSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
$ LWORK, IWORK, LIWORK, INFO ) * * -- LAPACK driver routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO INTEGER INFO, ITYPE, LDZ, LIWORK, LWORK, N * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL AP( * ), BP( * ), W( * ), WORK( * ), $ Z( LDZ, * ) * .. * * Purpose * ======= * * SSPGVD computes all the eigenvalues, and optionally, the eigenvectors * of a real generalized symmetric-definite eigenproblem, of the form * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and * B are assumed to be symmetric, stored in packed format, and B is also * positive definite. * If eigenvectors are desired, it uses a divide and conquer algorithm. * * The divide and conquer algorithm makes very mild assumptions about * floating point arithmetic. It will work on machines with a guard * digit in add/subtract, or on those binary machines without guard * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or * Cray-2. It could conceivably fail on hexadecimal or decimal machines * without guard digits, but we know of none. * * Arguments * ========= * * ITYPE (input) INTEGER * Specifies the problem type to be solved: * = 1: A*x = (lambda)*B*x * = 2: A*B*x = (lambda)*x * = 3: B*A*x = (lambda)*x * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangles of A and B are stored; * = 'L': Lower triangles of A and B are stored. * * N (input) INTEGER * The order of the matrices A and B. N >= 0. * * AP (input/output) REAL array, dimension (N*(N+1)/2) * On entry, the upper or lower triangle of the symmetric matrix * A, packed columnwise in a linear array. The j-th column of A * is stored in the array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. * * On exit, the contents of AP are destroyed. * * BP (input/output) REAL array, dimension (N*(N+1)/2) * On entry, the upper or lower triangle of the symmetric matrix * B, packed columnwise in a linear array. The j-th column of B * is stored in the array BP as follows: * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. * * On exit, the triangular factor U or L from the Cholesky * factorization B = U**T*U or B = L*L**T, in the same storage * format as B. * * W (output) REAL array, dimension (N) * If INFO = 0, the eigenvalues in ascending order. * * Z (output) REAL array, dimension (LDZ, N) * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of * eigenvectors. The eigenvectors are normalized as follows: * if ITYPE = 1 or 2, Z**T*B*Z = I; * if ITYPE = 3, Z**T*inv(B)*Z = I. * If JOBZ = 'N', then Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= max(1,N). * * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the required LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. * If N <= 1, LWORK >= 1. * If JOBZ = 'N' and N > 1, LWORK >= 2*N. * If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the required sizes of the WORK and IWORK * arrays, returns these values as the first entries of the WORK * and IWORK arrays, and no error message related to LWORK or * LIWORK is issued by XERBLA. * * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) * On exit, if INFO = 0, IWORK(1) returns the required LIWORK. * * LIWORK (input) INTEGER * The dimension of the array IWORK. * If JOBZ = 'N' or N <= 1, LIWORK >= 1. * If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. * * If LIWORK = -1, then a workspace query is assumed; the * routine only calculates the required sizes of the WORK and * IWORK arrays, returns these values as the first entries of * the WORK and IWORK arrays, and no error message related to * LWORK or LIWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: SPPTRF or SSPEVD returned an error code: * <= N: if INFO = i, SSPEVD failed to converge; * i off-diagonal elements of an intermediate * tridiagonal form did not converge to zero; * > N: if INFO = N + i, for 1 <= i <= N, then the leading * minor of order i of B is not positive definite. * The factorization of B could not be completed and * no eigenvalues or eigenvectors were computed. * * Further Details * =============== * * Based on contributions by * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA * * ===================================================================== * * .. Parameters .. REAL TWO PARAMETER ( TWO = 2.0E+0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, UPPER, WANTZ CHARACTER TRANS INTEGER J, LIWMIN, LWMIN, NEIG * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SPPTRF, SSPEVD, SSPGST, STPMV, STPSV, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, REAL * .. * .. Executable Statements .. * * Test the input parameters. * WANTZ = LSAME( JOBZ, 'V' ) UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) * INFO = 0 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN INFO = -1 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN INFO = -2 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN INFO = -9 END IF * IF( INFO.EQ.0 ) THEN IF( N.LE.1 ) THEN LIWMIN = 1 LWMIN = 1 ELSE IF( WANTZ ) THEN LIWMIN = 3 + 5*N LWMIN = 1 + 6*N + 2*N**2 ELSE LIWMIN = 1 LWMIN = 2*N END IF END IF WORK( 1 ) = LWMIN IWORK( 1 ) = LIWMIN IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -11 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN INFO = -13 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSPGVD', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Form a Cholesky factorization of BP. * CALL SPPTRF( UPLO, N, BP, INFO ) IF( INFO.NE.0 ) THEN INFO = N + INFO RETURN END IF * * Transform problem to standard eigenvalue problem and solve. * CALL SSPGST( ITYPE, UPLO, N, AP, BP, INFO ) CALL SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK, $ LIWORK, INFO ) LWMIN = MAX( REAL( LWMIN ), REAL( WORK( 1 ) ) ) LIWMIN = MAX( REAL( LIWMIN ), REAL( IWORK( 1 ) ) ) * IF( WANTZ ) THEN * * Backtransform eigenvectors to the original problem. * NEIG = N IF( INFO.GT.0 ) $ NEIG = INFO - 1 IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN * * For A*x=(lambda)*B*x and A*B*x=(lambda)*x; * backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y * IF( UPPER ) THEN TRANS = 'N' ELSE TRANS = 'T' END IF * DO 10 J = 1, NEIG CALL STPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ), $ 1 ) 10 CONTINUE * ELSE IF( ITYPE.EQ.3 ) THEN * * For B*A*x=(lambda)*x; * backtransform eigenvectors: x = L*y or U**T *y * IF( UPPER ) THEN TRANS = 'T' ELSE TRANS = 'N' END IF * DO 20 J = 1, NEIG CALL STPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ), $ 1 ) 20 CONTINUE END IF END IF * WORK( 1 ) = LWMIN IWORK( 1 ) = LIWMIN * RETURN * * End of SSPGVD * END |