1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 |
SUBROUTINE STGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
$ LDVL, VR, LDVR, MM, M, WORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER HOWMNY, SIDE INTEGER INFO, LDP, LDS, LDVL, LDVR, M, MM, N * .. * .. Array Arguments .. LOGICAL SELECT( * ) REAL P( LDP, * ), S( LDS, * ), VL( LDVL, * ), $ VR( LDVR, * ), WORK( * ) * .. * * * Purpose * ======= * * STGEVC computes some or all of the right and/or left eigenvectors of * a pair of real matrices (S,P), where S is a quasi-triangular matrix * and P is upper triangular. Matrix pairs of this type are produced by * the generalized Schur factorization of a matrix pair (A,B): * * A = Q*S*Z**T, B = Q*P*Z**T * * as computed by SGGHRD + SHGEQZ. * * The right eigenvector x and the left eigenvector y of (S,P) * corresponding to an eigenvalue w are defined by: * * S*x = w*P*x, (y**H)*S = w*(y**H)*P, * * where y**H denotes the conjugate tranpose of y. * The eigenvalues are not input to this routine, but are computed * directly from the diagonal blocks of S and P. * * This routine returns the matrices X and/or Y of right and left * eigenvectors of (S,P), or the products Z*X and/or Q*Y, * where Z and Q are input matrices. * If Q and Z are the orthogonal factors from the generalized Schur * factorization of a matrix pair (A,B), then Z*X and Q*Y * are the matrices of right and left eigenvectors of (A,B). * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'R': compute right eigenvectors only; * = 'L': compute left eigenvectors only; * = 'B': compute both right and left eigenvectors. * * HOWMNY (input) CHARACTER*1 * = 'A': compute all right and/or left eigenvectors; * = 'B': compute all right and/or left eigenvectors, * backtransformed by the matrices in VR and/or VL; * = 'S': compute selected right and/or left eigenvectors, * specified by the logical array SELECT. * * SELECT (input) LOGICAL array, dimension (N) * If HOWMNY='S', SELECT specifies the eigenvectors to be * computed. If w(j) is a real eigenvalue, the corresponding * real eigenvector is computed if SELECT(j) is .TRUE.. * If w(j) and w(j+1) are the real and imaginary parts of a * complex eigenvalue, the corresponding complex eigenvector * is computed if either SELECT(j) or SELECT(j+1) is .TRUE., * and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is * set to .FALSE.. * Not referenced if HOWMNY = 'A' or 'B'. * * N (input) INTEGER * The order of the matrices S and P. N >= 0. * * S (input) REAL array, dimension (LDS,N) * The upper quasi-triangular matrix S from a generalized Schur * factorization, as computed by SHGEQZ. * * LDS (input) INTEGER * The leading dimension of array S. LDS >= max(1,N). * * P (input) REAL array, dimension (LDP,N) * The upper triangular matrix P from a generalized Schur * factorization, as computed by SHGEQZ. * 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks * of S must be in positive diagonal form. * * LDP (input) INTEGER * The leading dimension of array P. LDP >= max(1,N). * * VL (input/output) REAL array, dimension (LDVL,MM) * On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must * contain an N-by-N matrix Q (usually the orthogonal matrix Q * of left Schur vectors returned by SHGEQZ). * On exit, if SIDE = 'L' or 'B', VL contains: * if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); * if HOWMNY = 'B', the matrix Q*Y; * if HOWMNY = 'S', the left eigenvectors of (S,P) specified by * SELECT, stored consecutively in the columns of * VL, in the same order as their eigenvalues. * * A complex eigenvector corresponding to a complex eigenvalue * is stored in two consecutive columns, the first holding the * real part, and the second the imaginary part. * * Not referenced if SIDE = 'R'. * * LDVL (input) INTEGER * The leading dimension of array VL. LDVL >= 1, and if * SIDE = 'L' or 'B', LDVL >= N. * * VR (input/output) REAL array, dimension (LDVR,MM) * On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must * contain an N-by-N matrix Z (usually the orthogonal matrix Z * of right Schur vectors returned by SHGEQZ). * * On exit, if SIDE = 'R' or 'B', VR contains: * if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); * if HOWMNY = 'B' or 'b', the matrix Z*X; * if HOWMNY = 'S' or 's', the right eigenvectors of (S,P) * specified by SELECT, stored consecutively in the * columns of VR, in the same order as their * eigenvalues. * * A complex eigenvector corresponding to a complex eigenvalue * is stored in two consecutive columns, the first holding the * real part and the second the imaginary part. * * Not referenced if SIDE = 'L'. * * LDVR (input) INTEGER * The leading dimension of the array VR. LDVR >= 1, and if * SIDE = 'R' or 'B', LDVR >= N. * * MM (input) INTEGER * The number of columns in the arrays VL and/or VR. MM >= M. * * M (output) INTEGER * The number of columns in the arrays VL and/or VR actually * used to store the eigenvectors. If HOWMNY = 'A' or 'B', M * is set to N. Each selected real eigenvector occupies one * column and each selected complex eigenvector occupies two * columns. * * WORK (workspace) REAL array, dimension (6*N) * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: the 2-by-2 block (INFO:INFO+1) does not have a complex * eigenvalue. * * Further Details * =============== * * Allocation of workspace: * ---------- -- --------- * * WORK( j ) = 1-norm of j-th column of A, above the diagonal * WORK( N+j ) = 1-norm of j-th column of B, above the diagonal * WORK( 2*N+1:3*N ) = real part of eigenvector * WORK( 3*N+1:4*N ) = imaginary part of eigenvector * WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector * WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector * * Rowwise vs. columnwise solution methods: * ------- -- ---------- -------- ------- * * Finding a generalized eigenvector consists basically of solving the * singular triangular system * * (A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left) * * Consider finding the i-th right eigenvector (assume all eigenvalues * are real). The equation to be solved is: * n i * 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1 * k=j k=j * * where C = (A - w B) (The components v(i+1:n) are 0.) * * The "rowwise" method is: * * (1) v(i) := 1 * for j = i-1,. . .,1: * i * (2) compute s = - sum C(j,k) v(k) and * k=j+1 * * (3) v(j) := s / C(j,j) * * Step 2 is sometimes called the "dot product" step, since it is an * inner product between the j-th row and the portion of the eigenvector * that has been computed so far. * * The "columnwise" method consists basically in doing the sums * for all the rows in parallel. As each v(j) is computed, the * contribution of v(j) times the j-th column of C is added to the * partial sums. Since FORTRAN arrays are stored columnwise, this has * the advantage that at each step, the elements of C that are accessed * are adjacent to one another, whereas with the rowwise method, the * elements accessed at a step are spaced LDS (and LDP) words apart. * * When finding left eigenvectors, the matrix in question is the * transpose of the one in storage, so the rowwise method then * actually accesses columns of A and B at each step, and so is the * preferred method. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE, SAFETY PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, $ SAFETY = 1.0E+2 ) * .. * .. Local Scalars .. LOGICAL COMPL, COMPR, IL2BY2, ILABAD, ILALL, ILBACK, $ ILBBAD, ILCOMP, ILCPLX, LSA, LSB INTEGER I, IBEG, IEIG, IEND, IHWMNY, IINFO, IM, ISIDE, $ J, JA, JC, JE, JR, JW, NA, NW REAL ACOEF, ACOEFA, ANORM, ASCALE, BCOEFA, BCOEFI, $ BCOEFR, BIG, BIGNUM, BNORM, BSCALE, CIM2A, $ CIM2B, CIMAGA, CIMAGB, CRE2A, CRE2B, CREALA, $ CREALB, DMIN, SAFMIN, SALFAR, SBETA, SCALE, $ SMALL, TEMP, TEMP2, TEMP2I, TEMP2R, ULP, XMAX, $ XSCALE * .. * .. Local Arrays .. REAL BDIAG( 2 ), SUM( 2, 2 ), SUMS( 2, 2 ), $ SUMP( 2, 2 ) * .. * .. External Functions .. LOGICAL LSAME REAL SLAMCH EXTERNAL LSAME, SLAMCH * .. * .. External Subroutines .. EXTERNAL SGEMV, SLABAD, SLACPY, SLAG2, SLALN2, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Executable Statements .. * * Decode and Test the input parameters * IF( LSAME( HOWMNY, 'A' ) ) THEN IHWMNY = 1 ILALL = .TRUE. ILBACK = .FALSE. ELSE IF( LSAME( HOWMNY, 'S' ) ) THEN IHWMNY = 2 ILALL = .FALSE. ILBACK = .FALSE. ELSE IF( LSAME( HOWMNY, 'B' ) ) THEN IHWMNY = 3 ILALL = .TRUE. ILBACK = .TRUE. ELSE IHWMNY = -1 ILALL = .TRUE. END IF * IF( LSAME( SIDE, 'R' ) ) THEN ISIDE = 1 COMPL = .FALSE. COMPR = .TRUE. ELSE IF( LSAME( SIDE, 'L' ) ) THEN ISIDE = 2 COMPL = .TRUE. COMPR = .FALSE. ELSE IF( LSAME( SIDE, 'B' ) ) THEN ISIDE = 3 COMPL = .TRUE. COMPR = .TRUE. ELSE ISIDE = -1 END IF * INFO = 0 IF( ISIDE.LT.0 ) THEN INFO = -1 ELSE IF( IHWMNY.LT.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDS.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDP.LT.MAX( 1, N ) ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'STGEVC', -INFO ) RETURN END IF * * Count the number of eigenvectors to be computed * IF( .NOT.ILALL ) THEN IM = 0 ILCPLX = .FALSE. DO 10 J = 1, N IF( ILCPLX ) THEN ILCPLX = .FALSE. GO TO 10 END IF IF( J.LT.N ) THEN IF( S( J+1, J ).NE.ZERO ) $ ILCPLX = .TRUE. END IF IF( ILCPLX ) THEN IF( SELECT( J ) .OR. SELECT( J+1 ) ) $ IM = IM + 2 ELSE IF( SELECT( J ) ) $ IM = IM + 1 END IF 10 CONTINUE ELSE IM = N END IF * * Check 2-by-2 diagonal blocks of A, B * ILABAD = .FALSE. ILBBAD = .FALSE. DO 20 J = 1, N - 1 IF( S( J+1, J ).NE.ZERO ) THEN IF( P( J, J ).EQ.ZERO .OR. P( J+1, J+1 ).EQ.ZERO .OR. $ P( J, J+1 ).NE.ZERO )ILBBAD = .TRUE. IF( J.LT.N-1 ) THEN IF( S( J+2, J+1 ).NE.ZERO ) $ ILABAD = .TRUE. END IF END IF 20 CONTINUE * IF( ILABAD ) THEN INFO = -5 ELSE IF( ILBBAD ) THEN INFO = -7 ELSE IF( COMPL .AND. LDVL.LT.N .OR. LDVL.LT.1 ) THEN INFO = -10 ELSE IF( COMPR .AND. LDVR.LT.N .OR. LDVR.LT.1 ) THEN INFO = -12 ELSE IF( MM.LT.IM ) THEN INFO = -13 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'STGEVC', -INFO ) RETURN END IF * * Quick return if possible * M = IM IF( N.EQ.0 ) $ RETURN * * Machine Constants * SAFMIN = SLAMCH( 'Safe minimum' ) BIG = ONE / SAFMIN CALL SLABAD( SAFMIN, BIG ) ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) SMALL = SAFMIN*N / ULP BIG = ONE / SMALL BIGNUM = ONE / ( SAFMIN*N ) * * Compute the 1-norm of each column of the strictly upper triangular * part (i.e., excluding all elements belonging to the diagonal * blocks) of A and B to check for possible overflow in the * triangular solver. * ANORM = ABS( S( 1, 1 ) ) IF( N.GT.1 ) $ ANORM = ANORM + ABS( S( 2, 1 ) ) BNORM = ABS( P( 1, 1 ) ) WORK( 1 ) = ZERO WORK( N+1 ) = ZERO * DO 50 J = 2, N TEMP = ZERO TEMP2 = ZERO IF( S( J, J-1 ).EQ.ZERO ) THEN IEND = J - 1 ELSE IEND = J - 2 END IF DO 30 I = 1, IEND TEMP = TEMP + ABS( S( I, J ) ) TEMP2 = TEMP2 + ABS( P( I, J ) ) 30 CONTINUE WORK( J ) = TEMP WORK( N+J ) = TEMP2 DO 40 I = IEND + 1, MIN( J+1, N ) TEMP = TEMP + ABS( S( I, J ) ) TEMP2 = TEMP2 + ABS( P( I, J ) ) 40 CONTINUE ANORM = MAX( ANORM, TEMP ) BNORM = MAX( BNORM, TEMP2 ) 50 CONTINUE * ASCALE = ONE / MAX( ANORM, SAFMIN ) BSCALE = ONE / MAX( BNORM, SAFMIN ) * * Left eigenvectors * IF( COMPL ) THEN IEIG = 0 * * Main loop over eigenvalues * ILCPLX = .FALSE. DO 220 JE = 1, N * * Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or * (b) this would be the second of a complex pair. * Check for complex eigenvalue, so as to be sure of which * entry(-ies) of SELECT to look at. * IF( ILCPLX ) THEN ILCPLX = .FALSE. GO TO 220 END IF NW = 1 IF( JE.LT.N ) THEN IF( S( JE+1, JE ).NE.ZERO ) THEN ILCPLX = .TRUE. NW = 2 END IF END IF IF( ILALL ) THEN ILCOMP = .TRUE. ELSE IF( ILCPLX ) THEN ILCOMP = SELECT( JE ) .OR. SELECT( JE+1 ) ELSE ILCOMP = SELECT( JE ) END IF IF( .NOT.ILCOMP ) $ GO TO 220 * * Decide if (a) singular pencil, (b) real eigenvalue, or * (c) complex eigenvalue. * IF( .NOT.ILCPLX ) THEN IF( ABS( S( JE, JE ) ).LE.SAFMIN .AND. $ ABS( P( JE, JE ) ).LE.SAFMIN ) THEN * * Singular matrix pencil -- return unit eigenvector * IEIG = IEIG + 1 DO 60 JR = 1, N VL( JR, IEIG ) = ZERO 60 CONTINUE VL( IEIG, IEIG ) = ONE GO TO 220 END IF END IF * * Clear vector * DO 70 JR = 1, NW*N WORK( 2*N+JR ) = ZERO 70 CONTINUE * T * Compute coefficients in ( a A - b B ) y = 0 * a is ACOEF * b is BCOEFR + i*BCOEFI * IF( .NOT.ILCPLX ) THEN * * Real eigenvalue * TEMP = ONE / MAX( ABS( S( JE, JE ) )*ASCALE, $ ABS( P( JE, JE ) )*BSCALE, SAFMIN ) SALFAR = ( TEMP*S( JE, JE ) )*ASCALE SBETA = ( TEMP*P( JE, JE ) )*BSCALE ACOEF = SBETA*ASCALE BCOEFR = SALFAR*BSCALE BCOEFI = ZERO * * Scale to avoid underflow * SCALE = ONE LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEF ).LT.SMALL LSB = ABS( SALFAR ).GE.SAFMIN .AND. ABS( BCOEFR ).LT. $ SMALL IF( LSA ) $ SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG ) IF( LSB ) $ SCALE = MAX( SCALE, ( SMALL / ABS( SALFAR ) )* $ MIN( BNORM, BIG ) ) IF( LSA .OR. LSB ) THEN SCALE = MIN( SCALE, ONE / $ ( SAFMIN*MAX( ONE, ABS( ACOEF ), $ ABS( BCOEFR ) ) ) ) IF( LSA ) THEN ACOEF = ASCALE*( SCALE*SBETA ) ELSE ACOEF = SCALE*ACOEF END IF IF( LSB ) THEN BCOEFR = BSCALE*( SCALE*SALFAR ) ELSE BCOEFR = SCALE*BCOEFR END IF END IF ACOEFA = ABS( ACOEF ) BCOEFA = ABS( BCOEFR ) * * First component is 1 * WORK( 2*N+JE ) = ONE XMAX = ONE ELSE * * Complex eigenvalue * CALL SLAG2( S( JE, JE ), LDS, P( JE, JE ), LDP, $ SAFMIN*SAFETY, ACOEF, TEMP, BCOEFR, TEMP2, $ BCOEFI ) BCOEFI = -BCOEFI IF( BCOEFI.EQ.ZERO ) THEN INFO = JE RETURN END IF * * Scale to avoid over/underflow * ACOEFA = ABS( ACOEF ) BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI ) SCALE = ONE IF( ACOEFA*ULP.LT.SAFMIN .AND. ACOEFA.GE.SAFMIN ) $ SCALE = ( SAFMIN / ULP ) / ACOEFA IF( BCOEFA*ULP.LT.SAFMIN .AND. BCOEFA.GE.SAFMIN ) $ SCALE = MAX( SCALE, ( SAFMIN / ULP ) / BCOEFA ) IF( SAFMIN*ACOEFA.GT.ASCALE ) $ SCALE = ASCALE / ( SAFMIN*ACOEFA ) IF( SAFMIN*BCOEFA.GT.BSCALE ) $ SCALE = MIN( SCALE, BSCALE / ( SAFMIN*BCOEFA ) ) IF( SCALE.NE.ONE ) THEN ACOEF = SCALE*ACOEF ACOEFA = ABS( ACOEF ) BCOEFR = SCALE*BCOEFR BCOEFI = SCALE*BCOEFI BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI ) END IF * * Compute first two components of eigenvector * TEMP = ACOEF*S( JE+1, JE ) TEMP2R = ACOEF*S( JE, JE ) - BCOEFR*P( JE, JE ) TEMP2I = -BCOEFI*P( JE, JE ) IF( ABS( TEMP ).GT.ABS( TEMP2R )+ABS( TEMP2I ) ) THEN WORK( 2*N+JE ) = ONE WORK( 3*N+JE ) = ZERO WORK( 2*N+JE+1 ) = -TEMP2R / TEMP WORK( 3*N+JE+1 ) = -TEMP2I / TEMP ELSE WORK( 2*N+JE+1 ) = ONE WORK( 3*N+JE+1 ) = ZERO TEMP = ACOEF*S( JE, JE+1 ) WORK( 2*N+JE ) = ( BCOEFR*P( JE+1, JE+1 )-ACOEF* $ S( JE+1, JE+1 ) ) / TEMP WORK( 3*N+JE ) = BCOEFI*P( JE+1, JE+1 ) / TEMP END IF XMAX = MAX( ABS( WORK( 2*N+JE ) )+ABS( WORK( 3*N+JE ) ), $ ABS( WORK( 2*N+JE+1 ) )+ABS( WORK( 3*N+JE+1 ) ) ) END IF * DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN ) * * T * Triangular solve of (a A - b B) y = 0 * * T * (rowwise in (a A - b B) , or columnwise in (a A - b B) ) * IL2BY2 = .FALSE. * DO 160 J = JE + NW, N IF( IL2BY2 ) THEN IL2BY2 = .FALSE. GO TO 160 END IF * NA = 1 BDIAG( 1 ) = P( J, J ) IF( J.LT.N ) THEN IF( S( J+1, J ).NE.ZERO ) THEN IL2BY2 = .TRUE. BDIAG( 2 ) = P( J+1, J+1 ) NA = 2 END IF END IF * * Check whether scaling is necessary for dot products * XSCALE = ONE / MAX( ONE, XMAX ) TEMP = MAX( WORK( J ), WORK( N+J ), $ ACOEFA*WORK( J )+BCOEFA*WORK( N+J ) ) IF( IL2BY2 ) $ TEMP = MAX( TEMP, WORK( J+1 ), WORK( N+J+1 ), $ ACOEFA*WORK( J+1 )+BCOEFA*WORK( N+J+1 ) ) IF( TEMP.GT.BIGNUM*XSCALE ) THEN DO 90 JW = 0, NW - 1 DO 80 JR = JE, J - 1 WORK( ( JW+2 )*N+JR ) = XSCALE* $ WORK( ( JW+2 )*N+JR ) 80 CONTINUE 90 CONTINUE XMAX = XMAX*XSCALE END IF * * Compute dot products * * j-1 * SUM = sum conjg( a*S(k,j) - b*P(k,j) )*x(k) * k=je * * To reduce the op count, this is done as * * _ j-1 _ j-1 * a*conjg( sum S(k,j)*x(k) ) - b*conjg( sum P(k,j)*x(k) ) * k=je k=je * * which may cause underflow problems if A or B are close * to underflow. (E.g., less than SMALL.) * * DO 120 JW = 1, NW DO 110 JA = 1, NA SUMS( JA, JW ) = ZERO SUMP( JA, JW ) = ZERO * DO 100 JR = JE, J - 1 SUMS( JA, JW ) = SUMS( JA, JW ) + $ S( JR, J+JA-1 )* $ WORK( ( JW+1 )*N+JR ) SUMP( JA, JW ) = SUMP( JA, JW ) + $ P( JR, J+JA-1 )* $ WORK( ( JW+1 )*N+JR ) 100 CONTINUE 110 CONTINUE 120 CONTINUE * DO 130 JA = 1, NA IF( ILCPLX ) THEN SUM( JA, 1 ) = -ACOEF*SUMS( JA, 1 ) + $ BCOEFR*SUMP( JA, 1 ) - $ BCOEFI*SUMP( JA, 2 ) SUM( JA, 2 ) = -ACOEF*SUMS( JA, 2 ) + $ BCOEFR*SUMP( JA, 2 ) + $ BCOEFI*SUMP( JA, 1 ) ELSE SUM( JA, 1 ) = -ACOEF*SUMS( JA, 1 ) + $ BCOEFR*SUMP( JA, 1 ) END IF 130 CONTINUE * * T * Solve ( a A - b B ) y = SUM(,) * with scaling and perturbation of the denominator * CALL SLALN2( .TRUE., NA, NW, DMIN, ACOEF, S( J, J ), LDS, $ BDIAG( 1 ), BDIAG( 2 ), SUM, 2, BCOEFR, $ BCOEFI, WORK( 2*N+J ), N, SCALE, TEMP, $ IINFO ) IF( SCALE.LT.ONE ) THEN DO 150 JW = 0, NW - 1 DO 140 JR = JE, J - 1 WORK( ( JW+2 )*N+JR ) = SCALE* $ WORK( ( JW+2 )*N+JR ) 140 CONTINUE 150 CONTINUE XMAX = SCALE*XMAX END IF XMAX = MAX( XMAX, TEMP ) 160 CONTINUE * * Copy eigenvector to VL, back transforming if * HOWMNY='B'. * IEIG = IEIG + 1 IF( ILBACK ) THEN DO 170 JW = 0, NW - 1 CALL SGEMV( 'N', N, N+1-JE, ONE, VL( 1, JE ), LDVL, $ WORK( ( JW+2 )*N+JE ), 1, ZERO, $ WORK( ( JW+4 )*N+1 ), 1 ) 170 CONTINUE CALL SLACPY( ' ', N, NW, WORK( 4*N+1 ), N, VL( 1, JE ), $ LDVL ) IBEG = 1 ELSE CALL SLACPY( ' ', N, NW, WORK( 2*N+1 ), N, VL( 1, IEIG ), $ LDVL ) IBEG = JE END IF * * Scale eigenvector * XMAX = ZERO IF( ILCPLX ) THEN DO 180 J = IBEG, N XMAX = MAX( XMAX, ABS( VL( J, IEIG ) )+ $ ABS( VL( J, IEIG+1 ) ) ) 180 CONTINUE ELSE DO 190 J = IBEG, N XMAX = MAX( XMAX, ABS( VL( J, IEIG ) ) ) 190 CONTINUE END IF * IF( XMAX.GT.SAFMIN ) THEN XSCALE = ONE / XMAX * DO 210 JW = 0, NW - 1 DO 200 JR = IBEG, N VL( JR, IEIG+JW ) = XSCALE*VL( JR, IEIG+JW ) 200 CONTINUE 210 CONTINUE END IF IEIG = IEIG + NW - 1 * 220 CONTINUE END IF * * Right eigenvectors * IF( COMPR ) THEN IEIG = IM + 1 * * Main loop over eigenvalues * ILCPLX = .FALSE. DO 500 JE = N, 1, -1 * * Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or * (b) this would be the second of a complex pair. * Check for complex eigenvalue, so as to be sure of which * entry(-ies) of SELECT to look at -- if complex, SELECT(JE) * or SELECT(JE-1). * If this is a complex pair, the 2-by-2 diagonal block * corresponding to the eigenvalue is in rows/columns JE-1:JE * IF( ILCPLX ) THEN ILCPLX = .FALSE. GO TO 500 END IF NW = 1 IF( JE.GT.1 ) THEN IF( S( JE, JE-1 ).NE.ZERO ) THEN ILCPLX = .TRUE. NW = 2 END IF END IF IF( ILALL ) THEN ILCOMP = .TRUE. ELSE IF( ILCPLX ) THEN ILCOMP = SELECT( JE ) .OR. SELECT( JE-1 ) ELSE ILCOMP = SELECT( JE ) END IF IF( .NOT.ILCOMP ) $ GO TO 500 * * Decide if (a) singular pencil, (b) real eigenvalue, or * (c) complex eigenvalue. * IF( .NOT.ILCPLX ) THEN IF( ABS( S( JE, JE ) ).LE.SAFMIN .AND. $ ABS( P( JE, JE ) ).LE.SAFMIN ) THEN * * Singular matrix pencil -- unit eigenvector * IEIG = IEIG - 1 DO 230 JR = 1, N VR( JR, IEIG ) = ZERO 230 CONTINUE VR( IEIG, IEIG ) = ONE GO TO 500 END IF END IF * * Clear vector * DO 250 JW = 0, NW - 1 DO 240 JR = 1, N WORK( ( JW+2 )*N+JR ) = ZERO 240 CONTINUE 250 CONTINUE * * Compute coefficients in ( a A - b B ) x = 0 * a is ACOEF * b is BCOEFR + i*BCOEFI * IF( .NOT.ILCPLX ) THEN * * Real eigenvalue * TEMP = ONE / MAX( ABS( S( JE, JE ) )*ASCALE, $ ABS( P( JE, JE ) )*BSCALE, SAFMIN ) SALFAR = ( TEMP*S( JE, JE ) )*ASCALE SBETA = ( TEMP*P( JE, JE ) )*BSCALE ACOEF = SBETA*ASCALE BCOEFR = SALFAR*BSCALE BCOEFI = ZERO * * Scale to avoid underflow * SCALE = ONE LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEF ).LT.SMALL LSB = ABS( SALFAR ).GE.SAFMIN .AND. ABS( BCOEFR ).LT. $ SMALL IF( LSA ) $ SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG ) IF( LSB ) $ SCALE = MAX( SCALE, ( SMALL / ABS( SALFAR ) )* $ MIN( BNORM, BIG ) ) IF( LSA .OR. LSB ) THEN SCALE = MIN( SCALE, ONE / $ ( SAFMIN*MAX( ONE, ABS( ACOEF ), $ ABS( BCOEFR ) ) ) ) IF( LSA ) THEN ACOEF = ASCALE*( SCALE*SBETA ) ELSE ACOEF = SCALE*ACOEF END IF IF( LSB ) THEN BCOEFR = BSCALE*( SCALE*SALFAR ) ELSE BCOEFR = SCALE*BCOEFR END IF END IF ACOEFA = ABS( ACOEF ) BCOEFA = ABS( BCOEFR ) * * First component is 1 * WORK( 2*N+JE ) = ONE XMAX = ONE * * Compute contribution from column JE of A and B to sum * (See "Further Details", above.) * DO 260 JR = 1, JE - 1 WORK( 2*N+JR ) = BCOEFR*P( JR, JE ) - $ ACOEF*S( JR, JE ) 260 CONTINUE ELSE * * Complex eigenvalue * CALL SLAG2( S( JE-1, JE-1 ), LDS, P( JE-1, JE-1 ), LDP, $ SAFMIN*SAFETY, ACOEF, TEMP, BCOEFR, TEMP2, $ BCOEFI ) IF( BCOEFI.EQ.ZERO ) THEN INFO = JE - 1 RETURN END IF * * Scale to avoid over/underflow * ACOEFA = ABS( ACOEF ) BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI ) SCALE = ONE IF( ACOEFA*ULP.LT.SAFMIN .AND. ACOEFA.GE.SAFMIN ) $ SCALE = ( SAFMIN / ULP ) / ACOEFA IF( BCOEFA*ULP.LT.SAFMIN .AND. BCOEFA.GE.SAFMIN ) $ SCALE = MAX( SCALE, ( SAFMIN / ULP ) / BCOEFA ) IF( SAFMIN*ACOEFA.GT.ASCALE ) $ SCALE = ASCALE / ( SAFMIN*ACOEFA ) IF( SAFMIN*BCOEFA.GT.BSCALE ) $ SCALE = MIN( SCALE, BSCALE / ( SAFMIN*BCOEFA ) ) IF( SCALE.NE.ONE ) THEN ACOEF = SCALE*ACOEF ACOEFA = ABS( ACOEF ) BCOEFR = SCALE*BCOEFR BCOEFI = SCALE*BCOEFI BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI ) END IF * * Compute first two components of eigenvector * and contribution to sums * TEMP = ACOEF*S( JE, JE-1 ) TEMP2R = ACOEF*S( JE, JE ) - BCOEFR*P( JE, JE ) TEMP2I = -BCOEFI*P( JE, JE ) IF( ABS( TEMP ).GE.ABS( TEMP2R )+ABS( TEMP2I ) ) THEN WORK( 2*N+JE ) = ONE WORK( 3*N+JE ) = ZERO WORK( 2*N+JE-1 ) = -TEMP2R / TEMP WORK( 3*N+JE-1 ) = -TEMP2I / TEMP ELSE WORK( 2*N+JE-1 ) = ONE WORK( 3*N+JE-1 ) = ZERO TEMP = ACOEF*S( JE-1, JE ) WORK( 2*N+JE ) = ( BCOEFR*P( JE-1, JE-1 )-ACOEF* $ S( JE-1, JE-1 ) ) / TEMP WORK( 3*N+JE ) = BCOEFI*P( JE-1, JE-1 ) / TEMP END IF * XMAX = MAX( ABS( WORK( 2*N+JE ) )+ABS( WORK( 3*N+JE ) ), $ ABS( WORK( 2*N+JE-1 ) )+ABS( WORK( 3*N+JE-1 ) ) ) * * Compute contribution from columns JE and JE-1 * of A and B to the sums. * CREALA = ACOEF*WORK( 2*N+JE-1 ) CIMAGA = ACOEF*WORK( 3*N+JE-1 ) CREALB = BCOEFR*WORK( 2*N+JE-1 ) - $ BCOEFI*WORK( 3*N+JE-1 ) CIMAGB = BCOEFI*WORK( 2*N+JE-1 ) + $ BCOEFR*WORK( 3*N+JE-1 ) CRE2A = ACOEF*WORK( 2*N+JE ) CIM2A = ACOEF*WORK( 3*N+JE ) CRE2B = BCOEFR*WORK( 2*N+JE ) - BCOEFI*WORK( 3*N+JE ) CIM2B = BCOEFI*WORK( 2*N+JE ) + BCOEFR*WORK( 3*N+JE ) DO 270 JR = 1, JE - 2 WORK( 2*N+JR ) = -CREALA*S( JR, JE-1 ) + $ CREALB*P( JR, JE-1 ) - $ CRE2A*S( JR, JE ) + CRE2B*P( JR, JE ) WORK( 3*N+JR ) = -CIMAGA*S( JR, JE-1 ) + $ CIMAGB*P( JR, JE-1 ) - $ CIM2A*S( JR, JE ) + CIM2B*P( JR, JE ) 270 CONTINUE END IF * DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN ) * * Columnwise triangular solve of (a A - b B) x = 0 * IL2BY2 = .FALSE. DO 370 J = JE - NW, 1, -1 * * If a 2-by-2 block, is in position j-1:j, wait until * next iteration to process it (when it will be j:j+1) * IF( .NOT.IL2BY2 .AND. J.GT.1 ) THEN IF( S( J, J-1 ).NE.ZERO ) THEN IL2BY2 = .TRUE. GO TO 370 END IF END IF BDIAG( 1 ) = P( J, J ) IF( IL2BY2 ) THEN NA = 2 BDIAG( 2 ) = P( J+1, J+1 ) ELSE NA = 1 END IF * * Compute x(j) (and x(j+1), if 2-by-2 block) * CALL SLALN2( .FALSE., NA, NW, DMIN, ACOEF, S( J, J ), $ LDS, BDIAG( 1 ), BDIAG( 2 ), WORK( 2*N+J ), $ N, BCOEFR, BCOEFI, SUM, 2, SCALE, TEMP, $ IINFO ) IF( SCALE.LT.ONE ) THEN * DO 290 JW = 0, NW - 1 DO 280 JR = 1, JE WORK( ( JW+2 )*N+JR ) = SCALE* $ WORK( ( JW+2 )*N+JR ) 280 CONTINUE 290 CONTINUE END IF XMAX = MAX( SCALE*XMAX, TEMP ) * DO 310 JW = 1, NW DO 300 JA = 1, NA WORK( ( JW+1 )*N+J+JA-1 ) = SUM( JA, JW ) 300 CONTINUE 310 CONTINUE * * w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling * IF( J.GT.1 ) THEN * * Check whether scaling is necessary for sum. * XSCALE = ONE / MAX( ONE, XMAX ) TEMP = ACOEFA*WORK( J ) + BCOEFA*WORK( N+J ) IF( IL2BY2 ) $ TEMP = MAX( TEMP, ACOEFA*WORK( J+1 )+BCOEFA* $ WORK( N+J+1 ) ) TEMP = MAX( TEMP, ACOEFA, BCOEFA ) IF( TEMP.GT.BIGNUM*XSCALE ) THEN * DO 330 JW = 0, NW - 1 DO 320 JR = 1, JE WORK( ( JW+2 )*N+JR ) = XSCALE* $ WORK( ( JW+2 )*N+JR ) 320 CONTINUE 330 CONTINUE XMAX = XMAX*XSCALE END IF * * Compute the contributions of the off-diagonals of * column j (and j+1, if 2-by-2 block) of A and B to the * sums. * * DO 360 JA = 1, NA IF( ILCPLX ) THEN CREALA = ACOEF*WORK( 2*N+J+JA-1 ) CIMAGA = ACOEF*WORK( 3*N+J+JA-1 ) CREALB = BCOEFR*WORK( 2*N+J+JA-1 ) - $ BCOEFI*WORK( 3*N+J+JA-1 ) CIMAGB = BCOEFI*WORK( 2*N+J+JA-1 ) + $ BCOEFR*WORK( 3*N+J+JA-1 ) DO 340 JR = 1, J - 1 WORK( 2*N+JR ) = WORK( 2*N+JR ) - $ CREALA*S( JR, J+JA-1 ) + $ CREALB*P( JR, J+JA-1 ) WORK( 3*N+JR ) = WORK( 3*N+JR ) - $ CIMAGA*S( JR, J+JA-1 ) + $ CIMAGB*P( JR, J+JA-1 ) 340 CONTINUE ELSE CREALA = ACOEF*WORK( 2*N+J+JA-1 ) CREALB = BCOEFR*WORK( 2*N+J+JA-1 ) DO 350 JR = 1, J - 1 WORK( 2*N+JR ) = WORK( 2*N+JR ) - $ CREALA*S( JR, J+JA-1 ) + $ CREALB*P( JR, J+JA-1 ) 350 CONTINUE END IF 360 CONTINUE END IF * IL2BY2 = .FALSE. 370 CONTINUE * * Copy eigenvector to VR, back transforming if * HOWMNY='B'. * IEIG = IEIG - NW IF( ILBACK ) THEN * DO 410 JW = 0, NW - 1 DO 380 JR = 1, N WORK( ( JW+4 )*N+JR ) = WORK( ( JW+2 )*N+1 )* $ VR( JR, 1 ) 380 CONTINUE * * A series of compiler directives to defeat * vectorization for the next loop * * DO 400 JC = 2, JE DO 390 JR = 1, N WORK( ( JW+4 )*N+JR ) = WORK( ( JW+4 )*N+JR ) + $ WORK( ( JW+2 )*N+JC )*VR( JR, JC ) 390 CONTINUE 400 CONTINUE 410 CONTINUE * DO 430 JW = 0, NW - 1 DO 420 JR = 1, N VR( JR, IEIG+JW ) = WORK( ( JW+4 )*N+JR ) 420 CONTINUE 430 CONTINUE * IEND = N ELSE DO 450 JW = 0, NW - 1 DO 440 JR = 1, N VR( JR, IEIG+JW ) = WORK( ( JW+2 )*N+JR ) 440 CONTINUE 450 CONTINUE * IEND = JE END IF * * Scale eigenvector * XMAX = ZERO IF( ILCPLX ) THEN DO 460 J = 1, IEND XMAX = MAX( XMAX, ABS( VR( J, IEIG ) )+ $ ABS( VR( J, IEIG+1 ) ) ) 460 CONTINUE ELSE DO 470 J = 1, IEND XMAX = MAX( XMAX, ABS( VR( J, IEIG ) ) ) 470 CONTINUE END IF * IF( XMAX.GT.SAFMIN ) THEN XSCALE = ONE / XMAX DO 490 JW = 0, NW - 1 DO 480 JR = 1, IEND VR( JR, IEIG+JW ) = XSCALE*VR( JR, IEIG+JW ) 480 CONTINUE 490 CONTINUE END IF 500 CONTINUE END IF * RETURN * * End of STGEVC * END |