1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
SUBROUTINE STGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
$ LDZ, IFST, ILST, WORK, LWORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. LOGICAL WANTQ, WANTZ INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, LWORK, N * .. * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ WORK( * ), Z( LDZ, * ) * .. * * Purpose * ======= * * STGEXC reorders the generalized real Schur decomposition of a real * matrix pair (A,B) using an orthogonal equivalence transformation * * (A, B) = Q * (A, B) * Z**T, * * so that the diagonal block of (A, B) with row index IFST is moved * to row ILST. * * (A, B) must be in generalized real Schur canonical form (as returned * by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 * diagonal blocks. B is upper triangular. * * Optionally, the matrices Q and Z of generalized Schur vectors are * updated. * * Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T * Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T * * * Arguments * ========= * * WANTQ (input) LOGICAL * .TRUE. : update the left transformation matrix Q; * .FALSE.: do not update Q. * * WANTZ (input) LOGICAL * .TRUE. : update the right transformation matrix Z; * .FALSE.: do not update Z. * * N (input) INTEGER * The order of the matrices A and B. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the matrix A in generalized real Schur canonical * form. * On exit, the updated matrix A, again in generalized * real Schur canonical form. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * B (input/output) REAL array, dimension (LDB,N) * On entry, the matrix B in generalized real Schur canonical * form (A,B). * On exit, the updated matrix B, again in generalized * real Schur canonical form (A,B). * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * Q (input/output) REAL array, dimension (LDZ,N) * On entry, if WANTQ = .TRUE., the orthogonal matrix Q. * On exit, the updated matrix Q. * If WANTQ = .FALSE., Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= 1. * If WANTQ = .TRUE., LDQ >= N. * * Z (input/output) REAL array, dimension (LDZ,N) * On entry, if WANTZ = .TRUE., the orthogonal matrix Z. * On exit, the updated matrix Z. * If WANTZ = .FALSE., Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1. * If WANTZ = .TRUE., LDZ >= N. * * IFST (input/output) INTEGER * ILST (input/output) INTEGER * Specify the reordering of the diagonal blocks of (A, B). * The block with row index IFST is moved to row ILST, by a * sequence of swapping between adjacent blocks. * On exit, if IFST pointed on entry to the second row of * a 2-by-2 block, it is changed to point to the first row; * ILST always points to the first row of the block in its * final position (which may differ from its input value by * +1 or -1). 1 <= IFST, ILST <= N. * * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. * LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * =0: successful exit. * <0: if INFO = -i, the i-th argument had an illegal value. * =1: The transformed matrix pair (A, B) would be too far * from generalized Schur form; the problem is ill- * conditioned. (A, B) may have been partially reordered, * and ILST points to the first row of the current * position of the block being moved. * * Further Details * =============== * * Based on contributions by * Bo Kagstrom and Peter Poromaa, Department of Computing Science, * Umea University, S-901 87 Umea, Sweden. * * [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the * Generalized Real Schur Form of a Regular Matrix Pair (A, B), in * M.S. Moonen et al (eds), Linear Algebra for Large Scale and * Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL LQUERY INTEGER HERE, LWMIN, NBF, NBL, NBNEXT * .. * .. External Subroutines .. EXTERNAL STGEX2, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Decode and test input arguments. * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. ( LDQ.LT.MAX( 1, N ) ) ) THEN INFO = -9 ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. ( LDZ.LT.MAX( 1, N ) ) ) THEN INFO = -11 ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN INFO = -12 ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN IF( N.LE.1 ) THEN LWMIN = 1 ELSE LWMIN = 4*N + 16 END IF WORK(1) = LWMIN * IF (LWORK.LT.LWMIN .AND. .NOT.LQUERY) THEN INFO = -15 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'STGEXC', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.LE.1 ) $ RETURN * * Determine the first row of the specified block and find out * if it is 1-by-1 or 2-by-2. * IF( IFST.GT.1 ) THEN IF( A( IFST, IFST-1 ).NE.ZERO ) $ IFST = IFST - 1 END IF NBF = 1 IF( IFST.LT.N ) THEN IF( A( IFST+1, IFST ).NE.ZERO ) $ NBF = 2 END IF * * Determine the first row of the final block * and find out if it is 1-by-1 or 2-by-2. * IF( ILST.GT.1 ) THEN IF( A( ILST, ILST-1 ).NE.ZERO ) $ ILST = ILST - 1 END IF NBL = 1 IF( ILST.LT.N ) THEN IF( A( ILST+1, ILST ).NE.ZERO ) $ NBL = 2 END IF IF( IFST.EQ.ILST ) $ RETURN * IF( IFST.LT.ILST ) THEN * * Update ILST. * IF( NBF.EQ.2 .AND. NBL.EQ.1 ) $ ILST = ILST - 1 IF( NBF.EQ.1 .AND. NBL.EQ.2 ) $ ILST = ILST + 1 * HERE = IFST * 10 CONTINUE * * Swap with next one below. * IF( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN * * Current block either 1-by-1 or 2-by-2. * NBNEXT = 1 IF( HERE+NBF+1.LE.N ) THEN IF( A( HERE+NBF+1, HERE+NBF ).NE.ZERO ) $ NBNEXT = 2 END IF CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, $ LDZ, HERE, NBF, NBNEXT, WORK, LWORK, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE + NBNEXT * * Test if 2-by-2 block breaks into two 1-by-1 blocks. * IF( NBF.EQ.2 ) THEN IF( A( HERE+1, HERE ).EQ.ZERO ) $ NBF = 3 END IF * ELSE * * Current block consists of two 1-by-1 blocks, each of which * must be swapped individually. * NBNEXT = 1 IF( HERE+3.LE.N ) THEN IF( A( HERE+3, HERE+2 ).NE.ZERO ) $ NBNEXT = 2 END IF CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, $ LDZ, HERE+1, 1, NBNEXT, WORK, LWORK, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF IF( NBNEXT.EQ.1 ) THEN * * Swap two 1-by-1 blocks. * CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, $ LDZ, HERE, 1, 1, WORK, LWORK, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE + 1 * ELSE * * Recompute NBNEXT in case of 2-by-2 split. * IF( A( HERE+2, HERE+1 ).EQ.ZERO ) $ NBNEXT = 1 IF( NBNEXT.EQ.2 ) THEN * * 2-by-2 block did not split. * CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, $ Z, LDZ, HERE, 1, NBNEXT, WORK, LWORK, $ INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE + 2 ELSE * * 2-by-2 block did split. * CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE + 1 CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE + 1 END IF * END IF END IF IF( HERE.LT.ILST ) $ GO TO 10 ELSE HERE = IFST * 20 CONTINUE * * Swap with next one below. * IF( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN * * Current block either 1-by-1 or 2-by-2. * NBNEXT = 1 IF( HERE.GE.3 ) THEN IF( A( HERE-1, HERE-2 ).NE.ZERO ) $ NBNEXT = 2 END IF CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, $ LDZ, HERE-NBNEXT, NBNEXT, NBF, WORK, LWORK, $ INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE - NBNEXT * * Test if 2-by-2 block breaks into two 1-by-1 blocks. * IF( NBF.EQ.2 ) THEN IF( A( HERE+1, HERE ).EQ.ZERO ) $ NBF = 3 END IF * ELSE * * Current block consists of two 1-by-1 blocks, each of which * must be swapped individually. * NBNEXT = 1 IF( HERE.GE.3 ) THEN IF( A( HERE-1, HERE-2 ).NE.ZERO ) $ NBNEXT = 2 END IF CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, $ LDZ, HERE-NBNEXT, NBNEXT, 1, WORK, LWORK, $ INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF IF( NBNEXT.EQ.1 ) THEN * * Swap two 1-by-1 blocks. * CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, $ LDZ, HERE, NBNEXT, 1, WORK, LWORK, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE - 1 ELSE * * Recompute NBNEXT in case of 2-by-2 split. * IF( A( HERE, HERE-1 ).EQ.ZERO ) $ NBNEXT = 1 IF( NBNEXT.EQ.2 ) THEN * * 2-by-2 block did not split. * CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, $ Z, LDZ, HERE-1, 2, 1, WORK, LWORK, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE - 2 ELSE * * 2-by-2 block did split. * CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE - 1 CALL STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, $ Z, LDZ, HERE, 1, 1, WORK, LWORK, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE - 1 END IF END IF END IF IF( HERE.GT.ILST ) $ GO TO 20 END IF ILST = HERE WORK( 1 ) = LWMIN RETURN * * End of STGEXC * END |