1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
$ LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER VECT INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), E( * ), RWORK( * ) COMPLEX*16 AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), $ Q( LDQ, * ), WORK( * ) * .. * * Purpose * ======= * * ZGBBRD reduces a complex general m-by-n band matrix A to real upper * bidiagonal form B by a unitary transformation: Q**H * A * P = B. * * The routine computes B, and optionally forms Q or P**H, or computes * Q**H*C for a given matrix C. * * Arguments * ========= * * VECT (input) CHARACTER*1 * Specifies whether or not the matrices Q and P**H are to be * formed. * = 'N': do not form Q or P**H; * = 'Q': form Q only; * = 'P': form P**H only; * = 'B': form both. * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * NCC (input) INTEGER * The number of columns of the matrix C. NCC >= 0. * * KL (input) INTEGER * The number of subdiagonals of the matrix A. KL >= 0. * * KU (input) INTEGER * The number of superdiagonals of the matrix A. KU >= 0. * * AB (input/output) COMPLEX*16 array, dimension (LDAB,N) * On entry, the m-by-n band matrix A, stored in rows 1 to * KL+KU+1. The j-th column of A is stored in the j-th column of * the array AB as follows: * AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). * On exit, A is overwritten by values generated during the * reduction. * * LDAB (input) INTEGER * The leading dimension of the array A. LDAB >= KL+KU+1. * * D (output) DOUBLE PRECISION array, dimension (min(M,N)) * The diagonal elements of the bidiagonal matrix B. * * E (output) DOUBLE PRECISION array, dimension (min(M,N)-1) * The superdiagonal elements of the bidiagonal matrix B. * * Q (output) COMPLEX*16 array, dimension (LDQ,M) * If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. * If VECT = 'N' or 'P', the array Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. * LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. * * PT (output) COMPLEX*16 array, dimension (LDPT,N) * If VECT = 'P' or 'B', the n-by-n unitary matrix P'. * If VECT = 'N' or 'Q', the array PT is not referenced. * * LDPT (input) INTEGER * The leading dimension of the array PT. * LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. * * C (input/output) COMPLEX*16 array, dimension (LDC,NCC) * On entry, an m-by-ncc matrix C. * On exit, C is overwritten by Q**H*C. * C is not referenced if NCC = 0. * * LDC (input) INTEGER * The leading dimension of the array C. * LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. * * WORK (workspace) COMPLEX*16 array, dimension (max(M,N)) * * RWORK (workspace) DOUBLE PRECISION array, dimension (max(M,N)) * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL WANTB, WANTC, WANTPT, WANTQ INTEGER I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1, $ KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT DOUBLE PRECISION ABST, RC COMPLEX*16 RA, RB, RS, T * .. * .. External Subroutines .. EXTERNAL XERBLA, ZLARGV, ZLARTG, ZLARTV, ZLASET, ZROT, $ ZSCAL * .. * .. Intrinsic Functions .. INTRINSIC ABS, DCONJG, MAX, MIN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Executable Statements .. * * Test the input parameters * WANTB = LSAME( VECT, 'B' ) WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB WANTPT = LSAME( VECT, 'P' ) .OR. WANTB WANTC = NCC.GT.0 KLU1 = KL + KU + 1 INFO = 0 IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) ) $ THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NCC.LT.0 ) THEN INFO = -4 ELSE IF( KL.LT.0 ) THEN INFO = -5 ELSE IF( KU.LT.0 ) THEN INFO = -6 ELSE IF( LDAB.LT.KLU1 ) THEN INFO = -8 ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN INFO = -12 ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN INFO = -14 ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGBBRD', -INFO ) RETURN END IF * * Initialize Q and P**H to the unit matrix, if needed * IF( WANTQ ) $ CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, LDQ ) IF( WANTPT ) $ CALL ZLASET( 'Full', N, N, CZERO, CONE, PT, LDPT ) * * Quick return if possible. * IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN * MINMN = MIN( M, N ) * IF( KL+KU.GT.1 ) THEN * * Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce * first to lower bidiagonal form and then transform to upper * bidiagonal * IF( KU.GT.0 ) THEN ML0 = 1 MU0 = 2 ELSE ML0 = 2 MU0 = 1 END IF * * Wherever possible, plane rotations are generated and applied in * vector operations of length NR over the index set J1:J2:KLU1. * * The complex sines of the plane rotations are stored in WORK, * and the real cosines in RWORK. * KLM = MIN( M-1, KL ) KUN = MIN( N-1, KU ) KB = KLM + KUN KB1 = KB + 1 INCA = KB1*LDAB NR = 0 J1 = KLM + 2 J2 = 1 - KUN * DO 90 I = 1, MINMN * * Reduce i-th column and i-th row of matrix to bidiagonal form * ML = KLM + 1 MU = KUN + 1 DO 80 KK = 1, KB J1 = J1 + KB J2 = J2 + KB * * generate plane rotations to annihilate nonzero elements * which have been created below the band * IF( NR.GT.0 ) $ CALL ZLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA, $ WORK( J1 ), KB1, RWORK( J1 ), KB1 ) * * apply plane rotations from the left * DO 10 L = 1, KB IF( J2-KLM+L-1.GT.N ) THEN NRT = NR - 1 ELSE NRT = NR END IF IF( NRT.GT.0 ) $ CALL ZLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA, $ AB( KLU1-L+1, J1-KLM+L-1 ), INCA, $ RWORK( J1 ), WORK( J1 ), KB1 ) 10 CONTINUE * IF( ML.GT.ML0 ) THEN IF( ML.LE.M-I+1 ) THEN * * generate plane rotation to annihilate a(i+ml-1,i) * within the band, and apply rotation from the left * CALL ZLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ), $ RWORK( I+ML-1 ), WORK( I+ML-1 ), RA ) AB( KU+ML-1, I ) = RA IF( I.LT.N ) $ CALL ZROT( MIN( KU+ML-2, N-I ), $ AB( KU+ML-2, I+1 ), LDAB-1, $ AB( KU+ML-1, I+1 ), LDAB-1, $ RWORK( I+ML-1 ), WORK( I+ML-1 ) ) END IF NR = NR + 1 J1 = J1 - KB1 END IF * IF( WANTQ ) THEN * * accumulate product of plane rotations in Q * DO 20 J = J1, J2, KB1 CALL ZROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1, $ RWORK( J ), DCONJG( WORK( J ) ) ) 20 CONTINUE END IF * IF( WANTC ) THEN * * apply plane rotations to C * DO 30 J = J1, J2, KB1 CALL ZROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC, $ RWORK( J ), WORK( J ) ) 30 CONTINUE END IF * IF( J2+KUN.GT.N ) THEN * * adjust J2 to keep within the bounds of the matrix * NR = NR - 1 J2 = J2 - KB1 END IF * DO 40 J = J1, J2, KB1 * * create nonzero element a(j-1,j+ku) above the band * and store it in WORK(n+1:2*n) * WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN ) AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN ) 40 CONTINUE * * generate plane rotations to annihilate nonzero elements * which have been generated above the band * IF( NR.GT.0 ) $ CALL ZLARGV( NR, AB( 1, J1+KUN-1 ), INCA, $ WORK( J1+KUN ), KB1, RWORK( J1+KUN ), $ KB1 ) * * apply plane rotations from the right * DO 50 L = 1, KB IF( J2+L-1.GT.M ) THEN NRT = NR - 1 ELSE NRT = NR END IF IF( NRT.GT.0 ) $ CALL ZLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA, $ AB( L, J1+KUN ), INCA, $ RWORK( J1+KUN ), WORK( J1+KUN ), KB1 ) 50 CONTINUE * IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN IF( MU.LE.N-I+1 ) THEN * * generate plane rotation to annihilate a(i,i+mu-1) * within the band, and apply rotation from the right * CALL ZLARTG( AB( KU-MU+3, I+MU-2 ), $ AB( KU-MU+2, I+MU-1 ), $ RWORK( I+MU-1 ), WORK( I+MU-1 ), RA ) AB( KU-MU+3, I+MU-2 ) = RA CALL ZROT( MIN( KL+MU-2, M-I ), $ AB( KU-MU+4, I+MU-2 ), 1, $ AB( KU-MU+3, I+MU-1 ), 1, $ RWORK( I+MU-1 ), WORK( I+MU-1 ) ) END IF NR = NR + 1 J1 = J1 - KB1 END IF * IF( WANTPT ) THEN * * accumulate product of plane rotations in P**H * DO 60 J = J1, J2, KB1 CALL ZROT( N, PT( J+KUN-1, 1 ), LDPT, $ PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ), $ DCONJG( WORK( J+KUN ) ) ) 60 CONTINUE END IF * IF( J2+KB.GT.M ) THEN * * adjust J2 to keep within the bounds of the matrix * NR = NR - 1 J2 = J2 - KB1 END IF * DO 70 J = J1, J2, KB1 * * create nonzero element a(j+kl+ku,j+ku-1) below the * band and store it in WORK(1:n) * WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN ) AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN ) 70 CONTINUE * IF( ML.GT.ML0 ) THEN ML = ML - 1 ELSE MU = MU - 1 END IF 80 CONTINUE 90 CONTINUE END IF * IF( KU.EQ.0 .AND. KL.GT.0 ) THEN * * A has been reduced to complex lower bidiagonal form * * Transform lower bidiagonal form to upper bidiagonal by applying * plane rotations from the left, overwriting superdiagonal * elements on subdiagonal elements * DO 100 I = 1, MIN( M-1, N ) CALL ZLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA ) AB( 1, I ) = RA IF( I.LT.N ) THEN AB( 2, I ) = RS*AB( 1, I+1 ) AB( 1, I+1 ) = RC*AB( 1, I+1 ) END IF IF( WANTQ ) $ CALL ZROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC, $ DCONJG( RS ) ) IF( WANTC ) $ CALL ZROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC, $ RS ) 100 CONTINUE ELSE * * A has been reduced to complex upper bidiagonal form or is * diagonal * IF( KU.GT.0 .AND. M.LT.N ) THEN * * Annihilate a(m,m+1) by applying plane rotations from the * right * RB = AB( KU, M+1 ) DO 110 I = M, 1, -1 CALL ZLARTG( AB( KU+1, I ), RB, RC, RS, RA ) AB( KU+1, I ) = RA IF( I.GT.1 ) THEN RB = -DCONJG( RS )*AB( KU, I ) AB( KU, I ) = RC*AB( KU, I ) END IF IF( WANTPT ) $ CALL ZROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT, $ RC, DCONJG( RS ) ) 110 CONTINUE END IF END IF * * Make diagonal and superdiagonal elements real, storing them in D * and E * T = AB( KU+1, 1 ) DO 120 I = 1, MINMN ABST = ABS( T ) D( I ) = ABST IF( ABST.NE.ZERO ) THEN T = T / ABST ELSE T = CONE END IF IF( WANTQ ) $ CALL ZSCAL( M, T, Q( 1, I ), 1 ) IF( WANTC ) $ CALL ZSCAL( NCC, DCONJG( T ), C( I, 1 ), LDC ) IF( I.LT.MINMN ) THEN IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN E( I ) = ZERO T = AB( 1, I+1 ) ELSE IF( KU.EQ.0 ) THEN T = AB( 2, I )*DCONJG( T ) ELSE T = AB( KU, I+1 )*DCONJG( T ) END IF ABST = ABS( T ) E( I ) = ABST IF( ABST.NE.ZERO ) THEN T = T / ABST ELSE T = CONE END IF IF( WANTPT ) $ CALL ZSCAL( N, T, PT( I+1, 1 ), LDPT ) T = AB( KU+1, I+1 )*DCONJG( T ) END IF END IF 120 CONTINUE RETURN * * End of ZGBBRD * END |